首页 >
椭圆曲线
✍ dations ◷ 2025-04-25 19:05:18 #椭圆曲线
在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一平面代数曲线,由如下形式的方程定义且满足其是无奇点的;亦即,其图形没有尖点或自相交。(当系数域的特征为2或3时,上面的方程不能涵盖所有非奇异的三次曲线;见下面的#一般域上的椭圆曲线。)正式地,椭圆曲线是光滑的、射影的、亏格为1的代数曲线,其上有一个特定的点O。椭圆曲线是阿贝尔簇 – 也就是说,它有代数上定义的乘法,并且对该乘法形成阿贝尔群 – 其中 O即为单位元。若
y
2
=
P
(
x
)
{displaystyle y^{2}=P(x),}
,其中P为任一没有重根的三次或四次多项式,然后可得到一亏格1的无奇点平面曲线,其通常亦被称为椭圆曲线。更一般化地,一亏格1的代数曲线,如两个三维二次曲面相交,即称为椭圆曲线。运用椭圆函数理论,我们可以证明定义在复数上的椭圆曲线对应于环面在复射影平面内的嵌入。环面也是一个阿贝尔群,事实上,这个对应也是一个群同构。尽管椭圆曲线的正式定义需要一定的代数几何背景,在实数上的椭圆曲线的一些特征可以使用入门级别的代数与几何来描绘。在这种情况下,椭圆曲线是由下列方程定义的平面曲线:其中a和b为实数。这类方程被称为魏尔斯特拉斯方程。椭圆曲线的定义也要求曲线是非奇异的。几何上来说,这意味着图像里面没有尖点、自相交或孤立点。代数上来说,这成立当且仅当判别式不等于0。(尽管这里的因子−16与曲线是否是非奇异的无关,这样定义判别式在对椭圆曲线进行更深入的研究时有用。)非奇异椭圆曲线的(实)图像在判别式为正的时候有两个连通分量,在判别式为负时则有一个连通分量。例如,在本小节的图像中,第一个曲线的判别式为64,而第二个曲线的判别式为−368。定义无穷远点0为椭圆曲线E上的一点。定义 + 运算子:取E上的两点P,Q,若两者相异,P + Q表示穿过P和Q的弦和椭圆曲线相交的第三点,再经x轴反射的镜像点;若两者是同一点,P+P=2P表示以P为切点和椭圆曲线相交的点再经x轴反射的镜像点。若P和Q的弦与y轴平行,P+Q=0(无限远点)。+定义了一个E上的交换群,这个群以0为单位元。特别地,所有有理点组成了E的子群。上面的群可以用代数方式定义。给定域
K
{displaystyle K}
(其中
K
{displaystyle K}
的特征值非2或者3)上的曲线
E
:
y
2
=
x
3
−
p
x
−
q
{displaystyle E:y^{2}=x^{3}-px-q,}
,及非无穷远点
P
(
x
P
,
y
P
)
,
Q
(
x
Q
,
y
Q
)
∈
E
{displaystyle P(x_{P},y_{P}),Q(x_{Q},y_{Q})in E}
。先假设
x
P
≠
x
Q
{displaystyle x_{P}neq x_{Q}}
,设
s
=
y
P
−
y
Q
x
P
−
x
Q
{displaystyle s={frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}}
(因
K
{displaystyle K}
是域,
s
{displaystyle s}
有定义)。定义
R
=
P
+
Q
{displaystyle R=P+Q,}
。因为
P
,
Q
,
R
{displaystyle P,Q,R}
共线,令该直线
F
{displaystyle F}
的方程为
y
=
s
x
+
d
{displaystyle y=sx+d,}
。直线
F
{displaystyle F}
与曲线
E
{displaystyle E}
相交,有:P
,
Q
,
R
{displaystyle P,Q,R}
是两线的交点,即方程的解。有:替换系数后可得:若
x
P
=
x
Q
{displaystyle x_{P}=x_{Q},}
:椭圆曲线可以被定义在任意域 K上;椭圆曲线的正式定义是K上的亏格为1的非奇异射影代数曲线,并具有一个定义在K特殊的点。如果K的特征不等于2或3,那么K上每个椭圆曲线都能写成如下形式其中p和q为K中的元素,使得右手边的多项式x3 − px − q没有二重根。如果特征等于2或3,那么需要保留更多项:在特征为3的情况下,最一般的方程具有如下形式这里常数b2, b4, b6可以任取,但需满足使得右手边的多项式无重根(写成这个形式有历史原因)。在特征为2的情况下,即使是这种形式也不够,其最一般的方程为需满足所定义的簇是非奇异的。
相关
- 人类微生物群系人类微生物群系(Human microbiome)又称为正常菌群(Normal Flora)是某些微生物与宿主在长期的进化过程中形成共生关系,对生物体无害的一类细菌。它们包括细菌,真菌,古菌,和病毒。虽然
- 拼写拼写狭义上指以一定规则组合字母形成一个词的过程,以及所组合成的字母列。特定语言依习惯或规范所形成的拼写的标准,是此语言正字法的重要组成部分。通常一个词的拼写是来自于
- 辽兴宗景福:1031年六月—1032年十一月辽兴宗耶律宗真(1016年4月3日-1055年8月28日),契丹第七位皇帝(1031年6月25日-1055年8月28日在位),契丹名只骨。在位24年,享年40岁,谥孝章皇帝。他是辽圣
- 热力学热力学,全称热动力学(法语:thermodynamique,德语:Thermodynamik,英语:thermodynamics,源于古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着
- 氢可酮氢可酮(英语:Hydrocodone)是一种半合成自可待因(一种发现于罂粟中的鸦片类生物碱)的鸦片类镇痛药。口服氢可酮可以镇痛和止咳,通常也用来缓解中至重度疼痛。氢可酮也可以与对乙酰
- 1964年民权法案1964年民权法案(英语:Civil Rights Act of 1964,于1964年7月2日生效)是美国在民权和劳动法上的标志性立法进程,它宣布了因种族、肤色、宗教信仰、性别或来源国而有的歧视性行为为
- Ausub2/subOsub3/sub三氧化二金(Au2O3),又称氧化金,是不稳定的氧化物,因为金活性非常小,很容易就会被其他活性比它大的元素抢走氧气。三氧化二金是呈红棕色至棕褐色的固体,不溶于水,溶于浓无机酸、冰醋
- 三界公三官大帝,指的是道教中掌管天界(天府)、地界(地府)、水界(水府)三界之神天官、地官和水官,闽南语俗称“三界公”,客家话称为“三界爷”,又称“三元大帝”。三位神明掌握三界间的一切行
- 阿迪达斯卡斯帕·略尔斯铁德(英语:Kasper Rørsted)(董事长) 伊戈尔·兰道(监事会主席)adidas Originals阿迪达斯(德语:adidas)是一间德国运动用品制造商,是阿迪达斯 AG的成员公司。阿迪达斯以
- 乌拉河之战乌拉河之战爆发于1612年农历九月,努尔哈赤率兵两万攻打乌拉,连克河西五城,布占泰亲自乘船自富尔哈河口请和,双方达成口盟后,建州在乌拉都城附近筑城,留守军后退兵。努尔哈赤在此战