椭圆曲线

✍ dations ◷ 2025-09-02 22:58:30 #椭圆曲线
在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一平面代数曲线,由如下形式的方程定义且满足其是无奇点的;亦即,其图形没有尖点或自相交。(当系数域的特征为2或3时,上面的方程不能涵盖所有非奇异的三次曲线;见下面的#一般域上的椭圆曲线。)正式地,椭圆曲线是光滑的、射影的、亏格为1的代数曲线,其上有一个特定的点O。椭圆曲线是阿贝尔簇 – 也就是说,它有代数上定义的乘法,并且对该乘法形成阿贝尔群 – 其中 O即为单位元。若 y 2 = P ( x ) {displaystyle y^{2}=P(x),} ,其中P为任一没有重根的三次或四次多项式,然后可得到一亏格1的无奇点平面曲线,其通常亦被称为椭圆曲线。更一般化地,一亏格1的代数曲线,如两个三维二次曲面相交,即称为椭圆曲线。运用椭圆函数理论,我们可以证明定义在复数上的椭圆曲线对应于环面在复射影平面内的嵌入。环面也是一个阿贝尔群,事实上,这个对应也是一个群同构。尽管椭圆曲线的正式定义需要一定的代数几何背景,在实数上的椭圆曲线的一些特征可以使用入门级别的代数与几何来描绘。在这种情况下,椭圆曲线是由下列方程定义的平面曲线:其中a和b为实数。这类方程被称为魏尔斯特拉斯方程。椭圆曲线的定义也要求曲线是非奇异的。几何上来说,这意味着图像里面没有尖点、自相交或孤立点。代数上来说,这成立当且仅当判别式不等于0。(尽管这里的因子−16与曲线是否是非奇异的无关,这样定义判别式在对椭圆曲线进行更深入的研究时有用。)非奇异椭圆曲线的(实)图像在判别式为正的时候有两个连通分量,在判别式为负时则有一个连通分量。例如,在本小节的图像中,第一个曲线的判别式为64,而第二个曲线的判别式为−368。定义无穷远点0为椭圆曲线E上的一点。定义 + 运算子:取E上的两点P,Q,若两者相异,P + Q表示穿过P和Q的弦和椭圆曲线相交的第三点,再经x轴反射的镜像点;若两者是同一点,P+P=2P表示以P为切点和椭圆曲线相交的点再经x轴反射的镜像点。若P和Q的弦与y轴平行,P+Q=0(无限远点)。+定义了一个E上的交换群,这个群以0为单位元。特别地,所有有理点组成了E的子群。上面的群可以用代数方式定义。给定域 K {displaystyle K} (其中 K {displaystyle K} 的特征值非2或者3)上的曲线 E : y 2 = x 3 − p x − q {displaystyle E:y^{2}=x^{3}-px-q,} ,及非无穷远点 P ( x P , y P ) , Q ( x Q , y Q ) ∈ E {displaystyle P(x_{P},y_{P}),Q(x_{Q},y_{Q})in E} 。先假设 x P ≠ x Q {displaystyle x_{P}neq x_{Q}} ,设 s = y P − y Q x P − x Q {displaystyle s={frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}} (因 K {displaystyle K} 是域, s {displaystyle s} 有定义)。定义 R = P + Q {displaystyle R=P+Q,} 。因为 P , Q , R {displaystyle P,Q,R} 共线,令该直线 F {displaystyle F} 的方程为 y = s x + d {displaystyle y=sx+d,} 。直线 F {displaystyle F} 与曲线 E {displaystyle E} 相交,有:P , Q , R {displaystyle P,Q,R} 是两线的交点,即方程的解。有:替换系数后可得:若 x P = x Q {displaystyle x_{P}=x_{Q},} :椭圆曲线可以被定义在任意域 K上;椭圆曲线的正式定义是K上的亏格为1的非奇异射影代数曲线,并具有一个定义在K特殊的点。如果K的特征不等于2或3,那么K上每个椭圆曲线都能写成如下形式其中p和q为K中的元素,使得右手边的多项式x3 − px − q没有二重根。如果特征等于2或3,那么需要保留更多项:在特征为3的情况下,最一般的方程具有如下形式这里常数b2, b4, b6可以任取,但需满足使得右手边的多项式无重根(写成这个形式有历史原因)。在特征为2的情况下,即使是这种形式也不够,其最一般的方程为需满足所定义的簇是非奇异的。

相关

  • 埃里克·迈耶埃里克·迈耶(英语:Eric A. Meyer)是美国网页设计顾问和作家。他以代表网页标准的倡导工作而闻名,最著名的是层叠样式表(CSS),这是一种管理HTML如何显示的技术。迈耶已经撰写了一些
  • 听障奥林匹克运动会听障奥林匹克运动会(英文:Deaflympics),简称听障奥运、听奥,又称听障林匹克运动会、听障运动会,原名世界聋人运动会,是国际听障运动总会(International Committee of Sports for the
  • 小亚细亚安纳托利亚(土耳其语:Anadolu;希腊语:ανατολή;帝国亚拉姆语:ܐܢܛܘܠܝܐ‎;亚美尼亚语:Անատոլիա),亦作安纳托力亚、安那托利亚,又名小亚细亚(土耳其语:Küçük Asya;英
  • 七味唐辛子七味唐辛子,简称七味、七味粉或SHICHIMI,是日本料理中一种以辣椒(唐辛子)为主材料的调味料,是由辣椒和其他六种不同的香辛料配制的。而在以前的江户,亦有称之为七色唐辛子或七种唐
  • 高 俊高俊(1933年10月7日-),中国地图学与地理信息系统学家。出生于北京。1956年毕业于解放军测绘学院。1999年当选为中国科学院院士。解放军测绘学院教授。
  • 电子邮件电子邮件(英语:electronic mail),简称电邮(email、e-mail),是指一种由一寄件人将数字信息发送给一个人或多个人的信息交换方式,一般会通过互联网或其他电脑网络进行书写、发送和接收
  • 4-雄烯二醇4-雄烯二醇(英语:4-Androstenediol,也被称为雄甾-4-烯-3β,17β-二醇,androst-4-ene-3β,17β-diol)是一种可以转化为睾酮的雄烯二醇,由于使用了不同的酶途径,其转化率约为15%,是4-
  • 独立电视公司独立电视公司(英语:ITV plc)是一家总部位于英格兰伦敦的英国媒体业公众有限公司。独立电视公司拥有13到15家区域性电视台,并以授权联播的形式组建成面向全国播出的独立电视网。
  • 红 (消歧义)红可以指:
  • 食腐食腐动物是指主要靠进食腐肉维生的动物。如秃鹫、秃鹳、鬣狗、狼獾、豺等。 事实上绝大部分肉食性动物,都会在捕食的同时食腐(如狮子、科莫多龙)。另外亦有以腐木、腐植质维生