首页 >
椭圆曲线
✍ dations ◷ 2025-04-02 16:58:00 #椭圆曲线
在数学上,椭圆曲线(英语:Elliptic curve,缩写为EC)为一平面代数曲线,由如下形式的方程定义且满足其是无奇点的;亦即,其图形没有尖点或自相交。(当系数域的特征为2或3时,上面的方程不能涵盖所有非奇异的三次曲线;见下面的#一般域上的椭圆曲线。)正式地,椭圆曲线是光滑的、射影的、亏格为1的代数曲线,其上有一个特定的点O。椭圆曲线是阿贝尔簇 – 也就是说,它有代数上定义的乘法,并且对该乘法形成阿贝尔群 – 其中 O即为单位元。若
y
2
=
P
(
x
)
{displaystyle y^{2}=P(x),}
,其中P为任一没有重根的三次或四次多项式,然后可得到一亏格1的无奇点平面曲线,其通常亦被称为椭圆曲线。更一般化地,一亏格1的代数曲线,如两个三维二次曲面相交,即称为椭圆曲线。运用椭圆函数理论,我们可以证明定义在复数上的椭圆曲线对应于环面在复射影平面内的嵌入。环面也是一个阿贝尔群,事实上,这个对应也是一个群同构。尽管椭圆曲线的正式定义需要一定的代数几何背景,在实数上的椭圆曲线的一些特征可以使用入门级别的代数与几何来描绘。在这种情况下,椭圆曲线是由下列方程定义的平面曲线:其中a和b为实数。这类方程被称为魏尔斯特拉斯方程。椭圆曲线的定义也要求曲线是非奇异的。几何上来说,这意味着图像里面没有尖点、自相交或孤立点。代数上来说,这成立当且仅当判别式不等于0。(尽管这里的因子−16与曲线是否是非奇异的无关,这样定义判别式在对椭圆曲线进行更深入的研究时有用。)非奇异椭圆曲线的(实)图像在判别式为正的时候有两个连通分量,在判别式为负时则有一个连通分量。例如,在本小节的图像中,第一个曲线的判别式为64,而第二个曲线的判别式为−368。定义无穷远点0为椭圆曲线E上的一点。定义 + 运算子:取E上的两点P,Q,若两者相异,P + Q表示穿过P和Q的弦和椭圆曲线相交的第三点,再经x轴反射的镜像点;若两者是同一点,P+P=2P表示以P为切点和椭圆曲线相交的点再经x轴反射的镜像点。若P和Q的弦与y轴平行,P+Q=0(无限远点)。+定义了一个E上的交换群,这个群以0为单位元。特别地,所有有理点组成了E的子群。上面的群可以用代数方式定义。给定域
K
{displaystyle K}
(其中
K
{displaystyle K}
的特征值非2或者3)上的曲线
E
:
y
2
=
x
3
−
p
x
−
q
{displaystyle E:y^{2}=x^{3}-px-q,}
,及非无穷远点
P
(
x
P
,
y
P
)
,
Q
(
x
Q
,
y
Q
)
∈
E
{displaystyle P(x_{P},y_{P}),Q(x_{Q},y_{Q})in E}
。先假设
x
P
≠
x
Q
{displaystyle x_{P}neq x_{Q}}
,设
s
=
y
P
−
y
Q
x
P
−
x
Q
{displaystyle s={frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}}
(因
K
{displaystyle K}
是域,
s
{displaystyle s}
有定义)。定义
R
=
P
+
Q
{displaystyle R=P+Q,}
。因为
P
,
Q
,
R
{displaystyle P,Q,R}
共线,令该直线
F
{displaystyle F}
的方程为
y
=
s
x
+
d
{displaystyle y=sx+d,}
。直线
F
{displaystyle F}
与曲线
E
{displaystyle E}
相交,有:P
,
Q
,
R
{displaystyle P,Q,R}
是两线的交点,即方程的解。有:替换系数后可得:若
x
P
=
x
Q
{displaystyle x_{P}=x_{Q},}
:椭圆曲线可以被定义在任意域 K上;椭圆曲线的正式定义是K上的亏格为1的非奇异射影代数曲线,并具有一个定义在K特殊的点。如果K的特征不等于2或3,那么K上每个椭圆曲线都能写成如下形式其中p和q为K中的元素,使得右手边的多项式x3 − px − q没有二重根。如果特征等于2或3,那么需要保留更多项:在特征为3的情况下,最一般的方程具有如下形式这里常数b2, b4, b6可以任取,但需满足使得右手边的多项式无重根(写成这个形式有历史原因)。在特征为2的情况下,即使是这种形式也不够,其最一般的方程为需满足所定义的簇是非奇异的。
相关
- EoL网络生命大百科(英语:Encyclopedia of Life,缩写:EOL)是一个免费的在线协作百科全书,旨在记录所有生物的科学知识,由世界各地的专家和非专家的贡献编制。旨在为每个物种构建一个“
- 运动神经元病肌萎缩性脊髓侧索硬化症(英语:Amyotrophic lateral sclerosis,缩写为 ALS),也称为肌萎缩侧索硬化症,有时也称为卢·贾里格症(英语:Lou Gehrig's disease)、渐冻人症、运动神经元病,是
- 托马斯·里德托马斯·里德(英文:Thomas Reid,1710年4月26日-1796年10月7日)是18世纪苏格兰启蒙运动时期哲学家,苏格兰常识学派的创始人。里德开始任教于亚伯丁大学,后到格拉斯哥大学接任亚当·
- 巴洛克时代巴洛克艺术(意大利语:Barocco,英语:Baroque,法语:Baroque)是欧洲17世纪时的一种艺术风格,运用夸张的运动性和清晰可辨的细节在雕塑、绘画、建筑、文学、舞蹈和音乐等领域来营造戏剧
- 标准德语标准德语(德语:Hochdeutsch或Standarddeutsch),中文也称标准德文,是德语的标准语,作为书面语使用,并作为不同方言区的交流语使用。德语是一种多中心语言(有多种标准语的语言)。根据不
- 十亿<< 100 101 102 103 104 105 106 107 108 109 >> 100000000 1000000000 100000000001000000000(十亿)是大于999,999,999但小于1,000,000,001的自然数。
- 半乳糖醇半乳糖醇(英语:Galactitol 或 dulcitol)是一种糖醇,是半乳糖的还原产物。在半乳糖激酶缺乏症(英语:galactokinase deficiency)(一种半乳糖血症)患者中,多余的半乳糖醇会在晶状体积累而
- 关切人的木乃伊关切人木乃伊是加那利群岛的关切人刻意制作的木乃伊。大多数的木乃伊在史前时期制成,直到十五世纪西班牙入据。 它们的防腐技术与古埃及人类似,不过由于盗墓,很少木乃伊被保留
- 茅特豪森-古森集中营坐标:48°15′25″N 14°30′04″E / 48.25694°N 14.50111°E / 48.25694; 14.50111毛特豪森-古森集中营(德语:Das Konzentrationslager Mauthausen)是一个位于上奥地利毛特豪
- 宁德市宁德市,别称闽东,是中华人民共和国福建省下辖的地级市,位于福建省东北沿海地区。市境南临福州市,西接南平市,北界浙江省丽水市、温州市,东滨东海。地处闽东山地北段,西部为鹫峰山,北