多极展开

✍ dations ◷ 2025-02-23 14:37:51 #多极展开
在物理学里,多极展开方法广泛应用于涉及于质量分布产生的重力场、电荷分布产生的电势或电场、电流分布产生的磁向量势和磁场、电磁波的传播等等问题。使用多极展开,重力场或电势等等,都可以表达为单极项、偶极项、四极项、八极项等等的叠加。一个典型范例是,从原子核的外部多极矩与电子轨域的内部多极矩之间的交互作用能量,计算求得原子的原子核外多极矩。由于从原子核的外多极矩可以给出原子核内部的电荷分布,物理学者可以研究原子核的形状。做理论运算时,在允许误差范围内,时常可以只取多极展开的最低阶的几个非零项目,忽略其它项目,因为它们的数值超小。在静电学里,设定电荷密度分布 ρ ( r ′ ) {displaystyle rho (mathbf {r} ')} ,则其产生的电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 为其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, V ′ {displaystyle mathbb {V'} } 是积分的体积区域。假设体积区域 V ′ {displaystyle mathbb {V'} } 是在以原点为圆心、半径为 R {displaystyle R} 的圆球内部,则在圆球以外,电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 可以多极展开。文献里常见到两种电势的多极展开方法。一种展开为直角坐标 ( x , y , z ) {displaystyle (x,y,z)} 的泰勒级数,称为“笛卡儿多极展开”(Cartesian multipole expansion);另一种是用距离倒数的幂和球谐函数展开,是以球坐标表示,称为“球多极展开”(spherical multipole expansion)。任意函数 f ( r ′ ) {displaystyle f(mathbf {r} ')} 在原点 r ′ = O {displaystyle mathbf {r} '=mathbf {O} } 的泰勒级数为其中, ∇ ′ {displaystyle nabla '} 是对于 r ′ {displaystyle mathbf {r} '} 的偏微分。设定 f ( r ′ ) = 1 | r − r ′ | {displaystyle f(mathbf {r} ')={frac {1}{|mathbf {r} -mathbf {r} '|}}} ,则 f ( r ′ ) {displaystyle f(mathbf {r} ')} 对于 r ′ {displaystyle mathbf {r} '} 的偏微分为其中, δ α β {displaystyle delta _{alpha beta }} 是克罗内克记号。所以 1 | r − r ′ | {displaystyle {frac {1}{|mathbf {r} -mathbf {r} '|}}} 在原点 r ′ = O {displaystyle mathbf {r} '=mathbf {O} } 的泰勒级数为将这展开式代入电势的方程式,则可得到总电荷(电单极矩) q {displaystyle q} 、电偶极矩 p {displaystyle mathbf {p} } 、电四极矩( electric quadrupole moment) Q α β {displaystyle Q_{alpha beta }} 分别以方程式定义为则电势的电单极矩、电偶极矩、电四极矩等等“笛卡儿多极矩”项目的总贡献为场位置与源位置之间距离的倒数, 1 | r − r ′ | {displaystyle {frac {1}{|mathbf {r} -mathbf {r} '|}}} ,可以用球谐函数 Y ℓ m {displaystyle Y_{ell m}} 展开为其中, r {displaystyle mathbf {r} } 与 r ′ {displaystyle mathbf {r} '} 的球坐标分别为 ( r , θ , ϕ ) {displaystyle (r,theta ,phi )} 与 ( r ′ , θ ′ , ϕ ′ ) {displaystyle (r',theta ',phi ')} 。将这展开式代入电势的方程式,则可得到电荷分布的球多极矩 q ℓ m {displaystyle q_{ell m}} 以方程式定义为则电势可以以球多极矩表示为注意到 q ℓ ( − m ) = ( − 1 ) m q ℓ m ∗ {displaystyle q_{ell (-m)}=(-1)^{m}q_{ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:对于多极展开式的每一阶 ℓ {displaystyle ell } ,笛卡儿多极展开会得到 ( ℓ + 1 ) ( ℓ + 2 ) / 2 {displaystyle (ell +1)(ell +2)/2} 个笛卡儿多极矩,而球多极展开会得到 2 ℓ + 1 {displaystyle 2ell +1} 个球多极矩。这是因为两种展开各自具有不同的旋转变换属性。笛卡儿多极矩是可约的(reducible);而球多极矩则是不可约的,这种分解能够得到旋转群的不可约表示。在多极展开式里,不等于零的最低阶多极矩,其数值与原点的选择无关。例如,对于在 V ′ {displaystyle mathbb {V'} } 内部、位置为 r 0 ′ {displaystyle mathbf {r} '_{0}} 的单独点电荷,电荷密度可以写为 ρ ( r ′ ) = q δ ( r ′ − r 0 ′ ) {displaystyle rho (mathbf {r} ')=qdelta (mathbf {r} '-mathbf {r} '_{0})} 。这单独点电荷的电单极矩为 ∫ V ′ q δ ( r ′ − r 0 ′ )   d 3 r ′ = q {displaystyle int _{mathbb {V'} }qdelta (mathbf {r} '-mathbf {r} '_{0}) mathrm {d} ^{3}mathbf {r} '=q} ,与原点位置无关。对于在 V ′ {displaystyle mathbb {V'} } 内部、位置分别为 r 1 ′ {displaystyle mathbf {r} '_{1}} 、 r 2 ′ {displaystyle mathbf {r} '_{2}} 的两个异电性、同电量的点电荷,电荷密度可以写为 ρ ( r ′ ) = q [ δ ( r ′ − r 1 ′ ) − δ ( r ′ − r 2 ′ ) ] {displaystyle rho (mathbf {r} ')=q} 。这单独点电荷的电单极矩为 ∫ V ′ q [ δ ( r ′ − r 1 ′ ) − δ ( r ′ − r 2 ′ ) ]   d 3 r ′ = 0 {displaystyle int _{mathbb {V'} }q mathrm {d} ^{3}mathbf {r} '=0} 。最低阶多极矩为电偶极矩 ∫ V ′ r ′ q [ δ ( r ′ − r 1 ′ ) − δ ( r ′ − r 2 ′ ) ]   d 3 r ′ = q ( r 1 ′ − r 2 ′ ) {displaystyle int _{mathbb {V'} }mathbf {r} 'q mathrm {d} ^{3}mathbf {r} '=q(mathbf {r} '_{1}-mathbf {r} '_{2})} 。这电偶极矩与原点位置无关,与两个点电荷之间的相对位置有关。假设处于外电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 的电荷密度分布 ρ ( r ) {displaystyle rho (mathbf {r} )} ,则其电能 U {displaystyle U} 为注意到外电场 E = − ∇ Φ {displaystyle mathbf {E} =-nabla Phi } ,外电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 在原点 O {displaystyle mathbf {O} } 的泰勒级数为由于外电场的散度为零 ∇ ⋅ E = 0 {displaystyle nabla cdot mathbf {E} =0} ,电势可以写为将这方程式代入电能的积分式,可以得到从这里可以看到电能的成分:第一个项目是点电荷处于外电势的电能、第二个项目是电偶极子处于外电场的电能、第三个项目是电四极子处于具有梯度的外电场所涉及的电能。在静磁学里,设定电流密度分布 J ( r ′ ) {displaystyle mathbf {J} (mathbf {r} ')} ,则其产生的磁向量势 A ( r ) {displaystyle mathbf {A} (mathbf {r} )} 为其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置。将前面推导出的 1 | r − r ′ | {displaystyle {frac {1}{|mathbf {r} -mathbf {r} '|}}} 在原点 r ′ = O {displaystyle mathbf {r} '=mathbf {O} } 的泰勒级数带入磁向量势方程式,则可得到由于在静磁学里 ∇ ′ ⋅ J ( r ′ ) = 0 {displaystyle nabla 'cdot mathbf {J} (mathbf {r} ')=0} ,应用高斯散度定理,由于电流密度分布 J {displaystyle mathbf {J} } 是局部的,假若积分体积 V ′ {displaystyle mathbb {V} '} 足够大,则位于包含积分体积的曲面 S ′ {displaystyle mathbb {S} '} 的电流密度分布为零:所以,磁单极子项目 ∫ V ′ J α ( r ′ ) d 3 r ′ {displaystyle int _{mathbb {V} '}J_{alpha }(mathbf {r} '),d^{3}mathbf {r} '} 等于零。磁偶极子项目不等于零。首先,应用高斯散度定理和电流密度分布的局部性这事实,可以得到注意到以下关系式:定义磁偶极矩 m {displaystyle mathbf {m} } 为只取至最低阶项目,即磁偶极矩项目,则磁向量势 A ( r ) {displaystyle mathbf {A} (mathbf {r} )} 为多极展开在数值模拟领域用途很多。对于相互作用的粒子组成的物理系统,快速多极法(fast multipole method)是高效率运算这系统的能量与作用力常使用的一种方法。快速多极法就是建构于格林函数的多极展开。这方法的基本点子是分解所有粒子为几个小群,每一个小群内的粒子正常地互相作用(即通过全部势能),而小群与小群之间的互相作用则是由其多极矩计算求得。快速多极矩法的效率通常与伊沃德求和法(Ewald summation)等同,但是假若系统的粒子具有高度群聚性,即高密度涨落,则快速多极矩法比较优等。

相关

  • 产褥期产后护理是指针对分娩女性所做的护理工作,而这段时期也叫产褥或产褥期。该护理工作视各地民情,经济等因素,而有不同的照料方式。例如中国或越南等亚洲国家即有名称为坐月子的产
  • 哈维哈维是多个外文人名的中文翻译。西班牙语的Xavi、Xabi以及英语的Harvey均可翻译为“哈维”。以哈维为名的人物有:
  • 解毒解毒或排毒(Detoxification) 是用生理学或医学方式,从生物体中去除有毒物质,也包括人体中肝脏的解毒功能。医学上的排毒方式包括去除毒物摄入、使用解毒剂、透析及(数量有限的)螯
  • 入部,就汉字索引来说,是为部首之一,康熙字典214个部首中的第十一个(二划的则为第五个)。就正体中文中,入部归于二划部首,入部通常是从上方或中间为部。且无其他部首可用者将部首归
  • 撒丁王国撒丁王国(意大利语:Regno di Sardegna)是意大利过去的一个王国。后来的意大利于撒丁王国的基础上统一。在撒丁王国建立以前,撒丁岛上传统的独立部落不是受热那亚就是受到比萨的
  • 现行宪法意大利共和国宪法(意大利语:Costituzione della Repubblica italiana)是1947年12月22日由意大利国民代表大会以453票支持、62票反对通过的宪法。迄今为止已经基于1947年12月27
  • 椭球体椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状
  • 秦国秦国是春秋战国时期诸侯国,嬴姓,赵氏。《史记•秦本纪》据为秦人所自述历史。据被盗掘后抢救回来的清华简《系年》的第三章所载,周初三监之乱平定后,蜚廉“东逃于商奄国。成王伐
  • 国际滑雪总会国际滑雪联合会(法语:Fédération Internationale de Ski,缩写:FIS)是由14个国家协会于1924年在法国霞慕尼成立,到目前已有123个成员国。而由于滑雪是冬季奥运会中主要的项目之一
  • 色丁色丁(Satin),是一种用通常有光泽的表面,但却有暗沉背面的纺织品。色丁是一种以经线为主的织造技术,使织物的交织点保持在最低水平。一般来说,除了用棉之类的短纤纱线织成的会被称