光滑数

✍ dations ◷ 2025-11-07 03:09:53 #解析数论,整数数列

光滑数(smooth number),或译脆数:ix,是一个可以约数分解为小素数乘积的正整数。光滑数一词是是伦纳德·阿德曼所提出。光滑数在以约数分解为基础的密码学中扮演重要角色。

若一正整数的素因数均不大于B,此整数即为B-光滑数。例如1620的约数分解为22 × 34 × 5,素因数均不大于5,因此1620是5-光滑数。

10和12的约数分解分别为2 × 5和22 × 3,二者素因数也都不大于5,因此二者均是是5-光滑数,虽然其素因数未包括不大于5的所有素数,但仍然可以是5-光滑数。

5-光滑数常称为正规数或汉明数(Hamming numbers)。7-光滑数有时会称为“谦虚数”或“高合成数”,不过后者会和以约数个数来定义的高合成数混淆。

B-光滑数的B不一定要是素数,例如上述举例的10和12不但是5-光滑数,也是6-光滑数(素因数都不大于6)。一般而言会选择B为素数的B-光滑数,但B也可以是合数。一正整数为B-光滑数当且仅当正整数为p-光滑数,且p是小于等于B的最大素数。

有些快速傅里叶变换算法中会用到光滑数,例如库利-图基快速傅里叶变换算法会将问题一直分解为较小的问题,其大小为原问题大小的约数,若原问题大小是原问题大小,原问题可以分解为许多很小的问题,此情形有有快速的算法,若大小是较大的素数,就要应用像是Chirp-Z 转换之类效率较差的算法。

5-光滑数〈或称为正规数〉在巴比伦数学中有重要的角色,在音乐理论中也很重要。有一个函数编程语言的问题就是要产生正规数。

密码学中也有应用光滑数。虽然大部分的密码学都会用到密码分析(已知最快的约数分解算法),但VSH(英语:Very smooth hash)杂凑函数利用光滑数来取得可证安全加密散列函数(英语:Provably secure cryptographic hash function)。

Ψ ( x , y ) {\displaystyle \scriptstyle \Psi (x,y)} 的-光滑数的个数(de Bruijn函数)。

若为定值且数值很小,可以用下式估计 Ψ ( x , B ) {\displaystyle \scriptstyle \Psi (x,B)} = log  / log :因此, = ,则:

其中 ρ ( u ) {\displaystyle \scriptstyle \rho (u)} 的素数幂次 p i n i {\displaystyle \scriptstyle p_{i}^{n_{i}}} 为-幂次光滑数:

例如,243251为5-光滑数,但不是5-幂次光滑数。因为其最大的素数幂次为24,该数为16-幂次光滑数,也是17-幂次光滑数,18-幂次光滑数……。

数论中有用到-光滑数及-幂次光滑数。例如波拉德p-1算法(英语:Pollard's p − 1 algorithm),这类算法一般会应用在光滑数中,但不会特别标示光滑数的是多少。此时的需是一个较小的整数,若增加,算法的效率就会迅速的变差。例如计算离散对数的Pohlig–Hellman算法(英语:Pohlig–Hellman algorithm)的时间复杂度是O(1/2)。

整数数列线上大全(OEIS)中有包括以下B较小的B-光滑数:

相关

  • 视黄醛视黄醛也称维生素A醛,分子式:C20H28O,是视黄醇氧化后的衍生物。它是由β-胡萝卜素发生氧化断裂生成的。还原得到视黄醇,氧化得到视黄酸。视黄醛是视紫红质的辅基。视觉细胞内11-
  • 孚日省孚日省(法语:Vosges,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge
  • 湿润性大陆气候温带大陆性湿润气候,又称湿润大陆性气候,是一种气候类型,温度变化较大。夏季炎热、冬季寒冷。本气候的降水分布较为均匀。温带阔叶林大牧场放牧业、商品谷物农业等
  • 728年前9世纪 | 前8世纪 | 前7世纪前740年代 前730年代 | 前720年代 | 前710年代 前700年代前733年 前732年 前731年 前730年 前729年 | 前728年 | 前727年 前726年 前725年 前7
  • 西尼罗热西尼罗河病毒是一种热带和温带地区病毒。它主要传染鸟,但还传染人、马、猫、臭鼬、灰鼠,和家养的兔子。人的传染主路是由被传染的蚊子的叮咬。最早发现西尼罗病毒是1937年在乌
  • 韶关韶关市(官方音译:Shaoguan,传统外文:Shiuchow、Shaokwan,粤音外文:Siu Kwan),简称韶,旧称韶州,是中华人民共和国广东省下辖的地级市,位于广东省北部,粤湘赣三省交界。市境西界清远市,南临
  • 里兹0113(都会中心) 01924 (Wakefield nos)坐标:53°47′59″N 1°32′57″W / 53.79972°N 1.54917°W / 53.79972; -1.54917利兹(英语:Leeds i/ˈliːdz/),台湾译里兹,英国英格兰西约
  • 朝比奈实玖瑠朝比奈实玖瑠(日语:朝比奈 みくる)是《凉宫春日系列》的主要角色之一,实际年龄不详,但在故事开始时为北高二年级学生,实际上是未来世界派来的调查员。故事开始时的朝比奈实玖瑠为
  • 圆满次第圆满次第(梵语:saṃpanna-krama shavanna-krama;藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung",
  • 伯利坎普-韦尔奇算法伯利坎普-韦尔奇算法(英语:Berlekamp-Welch algorithm)是一种用于高效地解码BCH码与里德-所罗门码的算法,其名取自埃尔温·伯利坎普与劳埃德·韦尔奇。伯利坎普-韦尔奇算法的优点