幻圆

✍ dations ◷ 2025-11-29 11:21:15 #中国算学,组合数学

幻圆是组合数学的一个分枝,将自然数排列在多个同心圆或多个连环圆上,使各圆周上数字之和相同,几条直径上的数字和也相同。著名的同心幻圆有南宋数学家杨辉的攒九图和丁易东的太衍五十图。

杨辉《续古摘奇算法》有聚五图,聚六图,聚八图,攒九图,八阵图,连环图。

杨辉《续古摘奇算法》中的攒九图以自然数1至33构成,9在圆心,其余排列在四个同心圆上,每圈8个数。杨辉有如下攒九图奇妙特点;

杨辉书中未曾说明幻圆的构造方法。新加坡大学蓝丽蓉教授 建议将八组半径数字分为两组,构成两个四阶幻方,例如;

{\displaystyle {\begin{bmatrix}28&5&11&25\\27&15&3&24\\6&32&29&2\\8&17&26&18\end{bmatrix}}}

{\displaystyle {\begin{bmatrix}12&31&19&7\\4&21&14&30\\20&16&23&10\\33&1&13&22\end{bmatrix}}}

由于这两个四阶幻方纵数横数之和都是69,只需从第一幻方和第二幻方中随意各取一行,或随意各取一列,构成同一条直径上的两对半径,一共组成四条直径,每直径8个数,最后在圆心安方9,就不但可以排出杨辉幻圆;而且可以排除许许多多不同排列的幻园。此外,由于数字的和与数字的次序无关,因此;

杨辉幻圆真是富于变化。如果限制四个圆周上必须有两个同和半圆(半圆上的四个数字之和必须=69),杨辉幻圆上的半径位置就不可调换。如此一来,杨辉幻圆可以有

具有16个同和线段(和数为69)的幻圆不止一个,可依靠四个圆圈的不同排列得到,共有4x3x2=24种。

1至64, 64数字分为八个圆圈,每个圆圈内数目之和=260。从西北角顺时针方向各小圆之和为:

40 + 24 + 9 + 56 + 41 + 25 + 8 + 57 = 260 {\displaystyle 40+24+9+56+41+25+8+57=260} 14 + 51 + 46 + 30 + 3 + 62 + 35 + 19 = 260 {\displaystyle 14+51+46+30+3+62+35+19=260}

45 + 29 + 4 + 61 + 36 + 20 + 13 + 52 = 260 {\displaystyle 45+29+4+61+36+20+13+52=260} 37 + 21 + 12 + 53 + 44 + 28 + 5 + 60 = 260 {\displaystyle 37+21+12+53+44+28+5+60=260}

47 + 31 + 2 + 63 + 34 + 18 + 15 + 50 = 260 {\displaystyle 47+31+2+63+34+18+15+50=260}

7 + 58 + 39 + 23 + 10 + 55 + 42 + 26 = 260 {\displaystyle 7+58+39+23+10+55+42+26=260}

38 + 22 + 11 + 54 + 43 + 27 + 6 + 59 = 260 {\displaystyle 38+22+11+54+43+27+6+59=260}

48 + 32 + 1 + 64 + 33 + 17 + 16 + 49 = 260 {\displaystyle 48+32+1+64+33+17+16+49=260}

14 + 51 + 62 + 3 + 7 + 58 + 55 + 10 = 260 {\displaystyle 14+51+62+3+7+58+55+10=260}

49 + 16 + 1 + 64 + 60 + 5 + 12 + 53 = 260 {\displaystyle 49+16+1+64+60+5+12+53=260}

此外两条对角线的16个数字之和为260的两倍: 40 + 57 + 41 + 56 + 50 + 47 + 34 + 63 + 29 + 4 + 13 + 20 + 22 + 11 + 6 + 27 = 2 260 = 520 {\displaystyle 40+57+41+56+50+47+34+63+29+4+13+20+22+11+6+27=2*260=520}

1至72,共72个数字分为9个圆圈,排列成方阵如图。

此连环图奇妙之处在于连环生圈:由于左右相邻的四个圈的数字连环,又多出4个 8字圆圈

连环圈由有以下相邻的8字圈连环组成:

一共13个八字圈::西北,北,东北,东,东南,南,西南,西,中,(东北,北,东,中),(西北,北,西,中),(东南,南,东,中),(西南,南,西,中)

南宋数学家丁易东是杨辉同时代人,以自然数1至49作出六同心圆幻圆,称之为太衍五十图。

丁易东幻圆特性;

丁易东给出把三阶幻方洛书变化为六阶幻园太衍五十图的的奇妙方法;

将从1至49的数字分成以下9组

按洛书口诀:“戴九履一,左三右七,二四为肩,六八为足”排列数字组:

聚五图,聚六图,聚八图,攒九图,八阵图。

相关

  • 新字体陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 赐死赐死,即赐自尽,是古代统治者以命令逼迫被统治者自杀的行为;相较于刑戮而处决,通常是为了让被赐死者能保有最后的尊严。多出现于中国、日本、朝鲜、希腊和罗马。在统治者有绝对威
  • 平面数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。给定一个
  • 人日人日节指每年农历正月初七,根据东亚传统习俗,当日为人类被创造的日子。人日亦称为“七元节”、“人胜节”、“人庆节”、“人口日”及“人七日”,越南称为开贺节。根据汉代东方
  • 法国远东学院法国远东学院(法语:École française d'Extrême-Orient,简称EFEO,越南语:Viện Viễn Đông Bác cổ/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic
  • 似箭石见内文似箭石(学名:)是生存于侏罗纪至中白垩纪的一属箭石,生活在温带及热带地区的大陆棚海域中,分布广泛,以自由游泳或漂浮为主,以触须捕捉小鱼和甲壳类为食。其化石分布于新西兰、
  • 战时标准船战时标准船(戦時標準船)是日本在第二次世界大战时建造的运输船,其角色相等于美国在二战时建造的自由轮。日本在太平洋战争后由于其运输船经常被美国潜艇击沉,尤其到了1943年后情
  • 伊莫金·坎宁安伊莫金·坎宁安(英文:Imogen Cunningham,1883年4月12日-1976年6月24日),是著名的美国摄影师,f/64的成员之一,以其人像和花卉摄影而闻名。坎宁安出生于美国俄勒冈州的波特兰市,她的摄
  • .bar.bar是一个互联网域名,服务于酒吧、酒馆、餐厅、夜总会等场所,以及送餐和酒品行业。作为一个新的通用顶级域,它为墨西哥城公司Punto 2012所有。域名.BAR启用于2014年6月11日。
  • 女王C-Cup易衡,笔名女王C-Cup,中国性教育科普作家,女权主义者。目前为果壳网供稿。