首页 >
泛函分析
✍ dations ◷ 2025-11-18 07:36:57 #泛函分析
泛函分析(英语:Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家维多·沃尔泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家群体(英语:Lwów School of Mathematics)进一步发展。从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*-代数和其他算子代数的基本概念。希尔伯特空间(Hilbert)可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为
ℵ
0
{displaystyle aleph _{0}}
)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。一般的巴拿赫空间(Banach)比较复杂,例如没有通用的办法构造其上的一组基。对于每个实数
p
{displaystyle p}
,如果
p
≥
1
{displaystyle pgeq 1}
,一个巴拿赫空间的例子是“所有绝对值的
p
{displaystyle p}
次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。泛函分析的主要定理包括:泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都构建于哈恩-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布尔素理想定理(Boolean prime ideal theorem)的一个形式。泛函分析目前包括以下分支:
相关
- 死亡学死亡学是一门研究死亡的学问。它调查死亡的外在环境与状况,以及相关生还人士的心理状况,以及广大社会对死亡的态度。基本上这门学问跨越许多领域,经常在医疗、护理、兽医等专业
- CXCL9n/an/an/an/an/an/an/an/an/an/aCXCL9(英语:Chemokine (C-X-C motif) ligand 9)是一小分子的细胞因子属于CXC趋化因子家族,又被称作“干扰素伽玛诱导的单核细胞因子”(Monokine i
- MIT Technology Review《麻省理工科技评论》(英语:MIT Technology Review)是由麻省理工学院于1899年创刊的杂志。 它侧重报道新兴科技和创新商业,专注于科技的商业化和资本化。它的读者包括高级管理人
- 威廉·韦伯威廉·爱德华·韦伯(德语:Wilhelm Eduard Weber,1804年10月24日-1891年6月23日),德国物理学家,19世纪最重要的物理学家之一。国际单位制中磁通量的单位“韦伯”(缩写:Wb)是以威廉·韦
- Hsub4/subSiOsub4/sub原硅酸(H4SiO4)是二氧化硅(SiO2)的水合物。H4SiO4不稳定,容易分解成为偏硅酸(H2SiO3)。
- 刚刚形成恒星形成是分子云的高密度区崩溃成为球形的等离子体形成恒星的过程。作为天文物理的一个分支,恒星形成的研究包括作为前导的星际物质和巨分子云,到恒星形成过程,早期型恒星和行
- 川烫汆(拼音:cuān;注音:ㄘㄨㄢ)是烹饪时对食材的一种处理方法,又称汆烫、川烫、焯水或飞水。较常用的一个意思是指把食材放入沸水中片刻,透过水的热力烧煮食材。可以达到去除肉类血水
- 伯克县伯克县(英语:Burke County, Georgia)是位于美国乔治亚州东部的一个县,东邻南卡罗莱纳州。面积2,163平方公里。根据美国2000年人口普查估计,共有人口22,243人。县治韦恩斯伯勒(Wayn
- 克勒乔治斯·克勒(德语:Georges Jean Franz Köhler,1946年4月17日-1995年3月1日),生于慕尼黑,德国生物学家,1984年诺贝尔生理学或医学奖得主。1986年起在弗莱堡大学担任教授,1995年因肺
- 粤菜粤菜,是中国八大菜系之一,也是四大中国菜系,亦称广东菜、广府菜,是指广府民系的代表性菜肴。值得注意的是,虽然客家民系和潮汕民系也生活在广东省境内,但客家菜和潮州菜(潮汕菜)均不
