泛函分析

✍ dations ◷ 2025-07-06 08:58:44 #泛函分析
泛函分析(英语:Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家维多·沃尔泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家群体(英语:Lwów School of Mathematics)进一步发展。从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*-代数和其他算子代数的基本概念。希尔伯特空间(Hilbert)可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为 ℵ 0 {displaystyle aleph _{0}} )上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。一般的巴拿赫空间(Banach)比较复杂,例如没有通用的办法构造其上的一组基。对于每个实数 p {displaystyle p} ,如果 p ≥ 1 {displaystyle pgeq 1} ,一个巴拿赫空间的例子是“所有绝对值的 p {displaystyle p} 次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。泛函分析的主要定理包括:泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都构建于哈恩-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布尔素理想定理(Boolean prime ideal theorem)的一个形式。泛函分析目前包括以下分支:

相关

  • 哈维哈维是多个外文人名的中文翻译。西班牙语的Xavi、Xabi以及英语的Harvey均可翻译为“哈维”。以哈维为名的人物有:
  • 1类致癌物对人类有确认的致癌性的物质、混合物和接触场合被国际癌症研究机构列为1类致癌物。这里的有些物质尽管没有特别充分的致癌性证据,但有足够的证据证明它们对动物致癌,而且能从
  • 非标准模型在数理逻辑的模型论中,称某理论的模型为非标准模型,如果它与预期模型(或称标准模型)不同构。如果预期模型是无限的, 且使用的语言是一阶的,则非标准模型的存在性由勒文海姆–斯科
  • 尤里·安德罗波夫尤里·弗拉基米罗维奇·安德罗波夫(俄语:Ю́рий Влади́мирович Андро́пов,1914年6月15日-1984年2月9日),苏联政治家,长期担任苏联党政领导职务,曾任苏联
  • 烤箱烤炉又称烘箱、烤箱、焗炉,是指用热空气烹调食品的一种装置,一般为封闭或半封闭结构。以开放形式用热空气加热的则称为烧烤。烤炉也可以用来泛指以热气体进行高温处理的装置。
  • 航天飞机高传真科技航天飞机高传真资讯科技股份有限公司为台湾一家上市公司,为规模最大的各式电脑线材制造厂。最早1985年成立于土城,1989年赴大陆设厂,2000年成立光纤生产部并上市。该公司获得UL
  • 醛糖还原酶醛糖还原酶(aldose reductase;aldehyde reductase,AR,EC1.1.1.21)存在于人体神经、红细胞、晶状体、视网膜等组织器官中,在多元醇通路中催化血液中的葡萄糖生成山梨醇。醛糖还原酶
  • 训令式罗马字日语书写系统汉字假名使用罗马字训令式罗马字(日语:訓令式ローマ字/くんれいしきろーまじ Kunrei shiki Rōmaji */?)是日语罗马字的一种,又称“文部省式罗马字”,由日本政府在1
  • 土伦土伦(法语:Toulon; 加斯科:Tolon),法国瓦尔省南部地中海海岸的城市。现在有人口175,000左右。土伦港,是法国南部的一个重要港口,是一个良好的海军基地,二战期间为维希法国的唯一海军
  • 圣奥诺雷市郊路圣奥诺雷市郊路(法语:Rue du Faubourg Saint-Honoré)是法国巴黎的一条街道。虽然相比香榭丽舍大街较为狭窄,但仍被视为世界上最时尚的街道之一,因为这里有几乎全球每一个主要的