泛函分析

✍ dations ◷ 2025-09-18 02:43:51 #泛函分析
泛函分析(英语:Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家维多·沃尔泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家群体(英语:Lwów School of Mathematics)进一步发展。从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*-代数和其他算子代数的基本概念。希尔伯特空间(Hilbert)可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为 ℵ 0 {displaystyle aleph _{0}} )上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。一般的巴拿赫空间(Banach)比较复杂,例如没有通用的办法构造其上的一组基。对于每个实数 p {displaystyle p} ,如果 p ≥ 1 {displaystyle pgeq 1} ,一个巴拿赫空间的例子是“所有绝对值的 p {displaystyle p} 次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。泛函分析的主要定理包括:泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都构建于哈恩-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布尔素理想定理(Boolean prime ideal theorem)的一个形式。泛函分析目前包括以下分支:

相关

  • wikiWiki(i/ˈwɪkiː/)是在万维网上开放,且可供多人协同创作的超文本系统,由沃德·坎宁安于1995年首先开发。沃德·坎宁安将wiki定义为“一种允许一群用户用简单的描述来创建和连接
  • 人工呼吸心肺复苏术(英语:Cardiopulmonary Resuscitation,CPR)是一种救助心搏骤停病患的急救措施,通过人工保持脑功能直到自然呼吸和血液循环恢复。心肺复苏术并非单一的技术,它包含了一系
  • 战壕热战壕热(英语:Trench Fever)是由五日热巴尔通体(学名Bartonella quintana)引起的传染病。特征为突然发病:发热、头痛,肌肉、骨及关节痛,胸、背出现皮疹。经体表寄生虫在人群中传播。
  • Gilead Sciences吉利德科学公司(Gilead Sciences, Inc.)是一家美国大型生物制药公司,成立于1987年,总部位于加州旧金山湾区的福斯特城。在台湾注册的名称为“吉立亚”。主要生产和研发针对艾滋
  • 光气碳酰氯,俗称光成气(英语:phosgene;化学式:COCl2),简称光气,从化学结构上看是碳酸的二酰氯衍生物,是非常活泼的亲电试剂,容易水解,是剧烈窒息性毒气,高浓度吸入可致肺水肿,毒性比氯气约大1
  • 字元编码字符编码(英语:Character encoding)、字集码是把字符集中的字符编码为指定集合中某一对象(例如:比特模式、自然数序列、8位组或者电脉冲),以便文本在计算机中存储和通过通信网络的
  • 性向认同性向认同(英语:Sexual identity),又译为性取向认同,是指对于自我性吸引行为或情感归属性别对象的身份认同。 性向认同、性取向与性行为是密切相关,但它们也是有区别的。性向认同指
  • 法兰西第三共和国法兰西第三共和国(法语:La Troisième République)是在1870年至1940年统治法国的政权,是首个稳固建立的共和政府。共和国采用议会制民主模式并在1870年9月4日成立,在第二帝国因
  • 东斯拉夫民族主要分布国家: 白俄罗斯、俄罗斯、乌克兰 次要分布国家:东斯拉夫人(白俄罗斯语:Усходнія славяне;俄语:Восточные славяне;乌克兰语:Східні
  • 日常生活日常生活是人们每天所做、所想、所感觉的事物。约翰·巴奇(英语:John A. Bargh)认为,日常生活中许多事物是因为环境的特性及对特性认知后的结果所造成,不是有意识刻意的选择。日