平均曲率

✍ dations ◷ 2025-12-05 07:23:55 #微分几何,曲面,曲率

在微分几何中,一个曲面 S {\displaystyle S} 的平均曲率(mean curvature) H {\displaystyle H} ,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。

这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。

p {\displaystyle p} 是曲面 S {\displaystyle S} 上一点,考虑 S {\displaystyle S} 上过 p {\displaystyle p} 的所有曲线 C i {\displaystyle C_{i}} 。每条这样的 C i {\displaystyle C_{i}} p {\displaystyle p} 点有一个伴随的曲率 K i {\displaystyle K_{i}} 。在这些曲率 K i {\displaystyle K_{i}} 中,至少有一个极大值 κ 1 {\displaystyle \kappa _{1}} 与极小值 κ 2 {\displaystyle \kappa _{2}} ,这两个曲率 κ 1 , κ 2 {\displaystyle \kappa _{1},\kappa _{2}} 称为 S {\displaystyle S} 的主曲率。

p S {\displaystyle p\in S} 的平均曲率是两个主曲率的平均值(斯皮瓦克 1999,第3卷,第2章),由欧拉公式其实也是所有曲率的平均值,故有此名。

利用第一基本形式与第二基本形式的系数,平均曲率表示为:

这里 E , F , G {\displaystyle E,F,G} 是第一基本形式的系数, L , M , N {\displaystyle L,M,N} 为第二基本形式的系数。

平均曲率可推广为更一般情形 (斯皮瓦克 1999,第4卷,第7章),一个超曲面 T {\displaystyle T} 的平均曲率为:

更抽象地说,平均曲率是第二基本形式(或等价地,形算子)的迹 × 1 n {\displaystyle \times {\frac {1}{n}}}

另外,平均曲率 H {\displaystyle H} 可以用共变导数 {\displaystyle \nabla } 写成

这里利用了高斯-Weingarten 关系, X ( x , t ) {\displaystyle X(x,t)} 是一族光滑嵌入超曲面, n {\displaystyle {\vec {n}}} 为单位法向量,而 g i j {\displaystyle g_{ij}} 是度量张量。

一个曲面是极小曲面当且仅当平均曲率为零。此外,平面 S {\displaystyle S} 平均曲率满足一个热型方程称为平均曲率流方程。

对 3 维空间中的曲面,平均曲率与曲面的单位法向量相关:

这里法向量的选取影响曲率的正负号。曲率的符号取决于法向量的方向:如果曲面“远离”法向量则曲率是正的。上面的公式对 3 维空间中任何方式定义的曲面都成立,只要能够计算单位法向量的散度。

对曲面是两个坐标的函数定义的曲面,比如 z = S ( x , y ) {\displaystyle z=S(x,y)} ,使用向下的法向量平均曲率(的两倍)表示为

如果曲面还是轴对称的,满足 z = S ( r ) {\displaystyle z=S(r)} ,则

在流体力学中使用的另外一种定义是不要因子 2:

这出现于杨-拉普拉斯公式中,平衡球状小滴内部的压力等于表面张力乘以 H f {\displaystyle H_{f}} ;两个曲率等于小滴半径的倒数 κ 1 = κ 2 = r 1 {\displaystyle \kappa _{1}=\kappa _{2}=r^{-1}}

一个极小曲面是所有点的平均曲率为零的曲面。经典例子有悬链曲面、螺旋面、Scherk 曲面与 Enneper 曲面。新近发现的包括 Costa 极小曲面(Costa's minimal surface,1982年)与 Gyroid(Gyroid,1970年)。

极小曲面的一个推广是考虑平均曲率为非零常数的曲面,球面和圆柱面就是这样的例子。Heinz Hopf 的一个问题为是否存在曲率为非零常数的非球面闭曲面。球面是惟一具有常平均曲率且没有边界或奇点的曲面;如果允许自交,则存在平均曲率为非零常数的闭曲面,Wente 在1986年曾构造出这样的自交环面(陈维桓 2006,4.6节)。

相关

  • 亚伦·贝克亚伦·特姆金·贝克(英语:Aaron Temkin Beck,1921年7月18日-),美国精神病医生,同时也是宾夕法尼亚大学精神病学的名誉教授。他是认知疗法之父,他开创性的理论被广泛应用于临床治疗抑
  • 传播艾滋病罪传播艾滋病罪在许多国家都会被认为是一种犯罪,不论是故意或者由于疏忽大意传播艾滋病。有这种行为的人会被以传播艾滋病、谋杀、一般杀人、谋杀未遂、袭击等罪名控告。有的国
  • 显卡主板通过:显示器通过:显卡(英语:Video card、Display card、Graphics card、Video adapter),是个人电脑最基本组成部分之一,用途是将计算机系统所需要的显示信息进行转换驱动显示器
  • 甲基叔丁基醚甲基第三丁基醚,英文缩写为MTBE(methyl tert-butyl ether),是一种无色透明、粘度低的可挥发性液体,具有特殊气味,含氧量为18.2%的有机醚类。它的蒸汽比空气重,可沿地面扩散,与强氧化
  • 城隍城隍,又称城隍爷、城隍爷公、城隍老爷,原意是“城墙”与“护城河”的意思,后来演变为民间信仰中的城池的守护神,亦为阴间司法体系的职司。民间信仰中城隍爷是由死去的名人或者对
  • 三国遗事《三国遗事》是由高丽时代国师一然(1206年--1289年)所编撰,以新罗、高句丽、百济三国为记述对象的史书。该书由五卷、九篇、一百四十四个条目所构成,九篇的篇目分别为王历、纪异
  • 鸊鷉目.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 大卫·戈德费因大卫·戈德费因 (英语:David L. Goldfein,1959年-),美国空军上将,现任美国空军参谋长,曾任空军第一副参谋长、联合参谋部主任、美国中央空军司令等职,2016年7月1日,戈德费因接替马克·
  • 峰福铁路.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 有机锂试剂有机锂试剂是含有碳原子与锂原子直接成键的一类有机金属化合物。锂原子具有天然的电正性,因此有机锂化合物的大部分电荷密度被推向了化学键上的碳原子一端,从而易形成碳负离子