平均曲率

✍ dations ◷ 2025-04-02 08:34:06 #微分几何,曲面,曲率

在微分几何中,一个曲面 S {\displaystyle S} 的平均曲率(mean curvature) H {\displaystyle H} ,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。

这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。

p {\displaystyle p} 是曲面 S {\displaystyle S} 上一点,考虑 S {\displaystyle S} 上过 p {\displaystyle p} 的所有曲线 C i {\displaystyle C_{i}} 。每条这样的 C i {\displaystyle C_{i}} p {\displaystyle p} 点有一个伴随的曲率 K i {\displaystyle K_{i}} 。在这些曲率 K i {\displaystyle K_{i}} 中,至少有一个极大值 κ 1 {\displaystyle \kappa _{1}} 与极小值 κ 2 {\displaystyle \kappa _{2}} ,这两个曲率 κ 1 , κ 2 {\displaystyle \kappa _{1},\kappa _{2}} 称为 S {\displaystyle S} 的主曲率。

p S {\displaystyle p\in S} 的平均曲率是两个主曲率的平均值(斯皮瓦克 1999,第3卷,第2章),由欧拉公式其实也是所有曲率的平均值,故有此名。

利用第一基本形式与第二基本形式的系数,平均曲率表示为:

这里 E , F , G {\displaystyle E,F,G} 是第一基本形式的系数, L , M , N {\displaystyle L,M,N} 为第二基本形式的系数。

平均曲率可推广为更一般情形 (斯皮瓦克 1999,第4卷,第7章),一个超曲面 T {\displaystyle T} 的平均曲率为:

更抽象地说,平均曲率是第二基本形式(或等价地,形算子)的迹 × 1 n {\displaystyle \times {\frac {1}{n}}}

另外,平均曲率 H {\displaystyle H} 可以用共变导数 {\displaystyle \nabla } 写成

这里利用了高斯-Weingarten 关系, X ( x , t ) {\displaystyle X(x,t)} 是一族光滑嵌入超曲面, n {\displaystyle {\vec {n}}} 为单位法向量,而 g i j {\displaystyle g_{ij}} 是度量张量。

一个曲面是极小曲面当且仅当平均曲率为零。此外,平面 S {\displaystyle S} 平均曲率满足一个热型方程称为平均曲率流方程。

对 3 维空间中的曲面,平均曲率与曲面的单位法向量相关:

这里法向量的选取影响曲率的正负号。曲率的符号取决于法向量的方向:如果曲面“远离”法向量则曲率是正的。上面的公式对 3 维空间中任何方式定义的曲面都成立,只要能够计算单位法向量的散度。

对曲面是两个坐标的函数定义的曲面,比如 z = S ( x , y ) {\displaystyle z=S(x,y)} ,使用向下的法向量平均曲率(的两倍)表示为

如果曲面还是轴对称的,满足 z = S ( r ) {\displaystyle z=S(r)} ,则

在流体力学中使用的另外一种定义是不要因子 2:

这出现于杨-拉普拉斯公式中,平衡球状小滴内部的压力等于表面张力乘以 H f {\displaystyle H_{f}} ;两个曲率等于小滴半径的倒数 κ 1 = κ 2 = r 1 {\displaystyle \kappa _{1}=\kappa _{2}=r^{-1}}

一个极小曲面是所有点的平均曲率为零的曲面。经典例子有悬链曲面、螺旋面、Scherk 曲面与 Enneper 曲面。新近发现的包括 Costa 极小曲面(Costa's minimal surface,1982年)与 Gyroid(Gyroid,1970年)。

极小曲面的一个推广是考虑平均曲率为非零常数的曲面,球面和圆柱面就是这样的例子。Heinz Hopf 的一个问题为是否存在曲率为非零常数的非球面闭曲面。球面是惟一具有常平均曲率且没有边界或奇点的曲面;如果允许自交,则存在平均曲率为非零常数的闭曲面,Wente 在1986年曾构造出这样的自交环面(陈维桓 2006,4.6节)。

相关

  • Pliny the Elder盖乌斯·普林尼·塞孔杜斯(拉丁语:Gaius Plinius Secundus,23年-79年8月24日),常称为老普林尼或大普林尼,古罗马作家、博物学者、军人、政治家,以《自然史》(一译《博物志》)一书留名
  • 克莫拉克莫拉(Camorra)是类似黑手党的秘密社团,起源于意大利坎帕尼亚地区和那不勒斯市,通过毒品交易、敲诈勒索来筹集经费,其活动导致所控制地区的高谋杀率。这是意大利最古老的有组织
  • 选举人团选举人团是从一组选民里选出某一位候选人。通常,这些代表不同的组织、政党、或实体,每个组织、政党或实体的选民的具体数量或所代表票数以特定的方式加权。在主权教廷,与梵蒂冈
  • 去甲肾上腺素多巴胺再摄取抑制剂去甲肾上腺素-多巴胺再吸收抑制剂(NDRI)是一种借由阻挡多巴胺转运体(DAT)及去甲肾上腺素转运体(NET)而达成作用的再吸收抑制剂。 它可使细胞膜外的多巴胺及去甲肾上腺素浓度增加,达
  • 书吏书吏又称作抄写员、文士,是古代一种专门为人纪录事情或抄写文本的职业。书吏的工作内容主要是抄写书籍,其内容可能是宗教文本、虚构故事、学术文本或教诲文学。有时候书吏还必
  • 马上长矛比武长枪比武大赛(Jousting 或 Tilting),是两名骑士之间的武术竞技,在十四至十六世纪间的中世纪以及文艺复兴早期最为兴盛。参赛的骑士一般都备有三种武器:长枪、单手剑和一种匕首(Ro
  • 角速度角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体转动时,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是赝向量),通常用希腊字母
  • 落叶林落叶植物,是植物学中一个常见名词,与常绿植物相对,在一年中有一段时间叶片将完全脱落,枝干将变得光秃秃的没有叶子。落叶性出现的原因如季节及气候有明显关系。由于在秋冬季节温
  • 莽原之役Indecisive (Union offensive continued)莽原之役(Battle of Wilderness),爆发于1864年5月5日至7日。1864年5月3日,格兰特麾下波多马克军团的十三万大军南下弗吉尼亚州,追赶兵败
  • 四氢生物蝶呤四氢生物蝶呤(tetrahydrobiopterin),又称沙丙蝶呤(Sapropterin),简称BH4, 是三种芳香族氨基酸羟化酶的一种重要辅酶:苯丙氨酸羟化酶将苯丙氨酸转化为酪氨酸;酪氨酸羟化酶将酪氨酸转化