平均曲率

✍ dations ◷ 2025-04-26 12:03:08 #微分几何,曲面,曲率

在微分几何中,一个曲面 S {\displaystyle S} 的平均曲率(mean curvature) H {\displaystyle H} ,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。

这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。

p {\displaystyle p} 是曲面 S {\displaystyle S} 上一点,考虑 S {\displaystyle S} 上过 p {\displaystyle p} 的所有曲线 C i {\displaystyle C_{i}} 。每条这样的 C i {\displaystyle C_{i}} p {\displaystyle p} 点有一个伴随的曲率 K i {\displaystyle K_{i}} 。在这些曲率 K i {\displaystyle K_{i}} 中,至少有一个极大值 κ 1 {\displaystyle \kappa _{1}} 与极小值 κ 2 {\displaystyle \kappa _{2}} ,这两个曲率 κ 1 , κ 2 {\displaystyle \kappa _{1},\kappa _{2}} 称为 S {\displaystyle S} 的主曲率。

p S {\displaystyle p\in S} 的平均曲率是两个主曲率的平均值(斯皮瓦克 1999,第3卷,第2章),由欧拉公式其实也是所有曲率的平均值,故有此名。

利用第一基本形式与第二基本形式的系数,平均曲率表示为:

这里 E , F , G {\displaystyle E,F,G} 是第一基本形式的系数, L , M , N {\displaystyle L,M,N} 为第二基本形式的系数。

平均曲率可推广为更一般情形 (斯皮瓦克 1999,第4卷,第7章),一个超曲面 T {\displaystyle T} 的平均曲率为:

更抽象地说,平均曲率是第二基本形式(或等价地,形算子)的迹 × 1 n {\displaystyle \times {\frac {1}{n}}}

另外,平均曲率 H {\displaystyle H} 可以用共变导数 {\displaystyle \nabla } 写成

这里利用了高斯-Weingarten 关系, X ( x , t ) {\displaystyle X(x,t)} 是一族光滑嵌入超曲面, n {\displaystyle {\vec {n}}} 为单位法向量,而 g i j {\displaystyle g_{ij}} 是度量张量。

一个曲面是极小曲面当且仅当平均曲率为零。此外,平面 S {\displaystyle S} 平均曲率满足一个热型方程称为平均曲率流方程。

对 3 维空间中的曲面,平均曲率与曲面的单位法向量相关:

这里法向量的选取影响曲率的正负号。曲率的符号取决于法向量的方向:如果曲面“远离”法向量则曲率是正的。上面的公式对 3 维空间中任何方式定义的曲面都成立,只要能够计算单位法向量的散度。

对曲面是两个坐标的函数定义的曲面,比如 z = S ( x , y ) {\displaystyle z=S(x,y)} ,使用向下的法向量平均曲率(的两倍)表示为

如果曲面还是轴对称的,满足 z = S ( r ) {\displaystyle z=S(r)} ,则

在流体力学中使用的另外一种定义是不要因子 2:

这出现于杨-拉普拉斯公式中,平衡球状小滴内部的压力等于表面张力乘以 H f {\displaystyle H_{f}} ;两个曲率等于小滴半径的倒数 κ 1 = κ 2 = r 1 {\displaystyle \kappa _{1}=\kappa _{2}=r^{-1}}

一个极小曲面是所有点的平均曲率为零的曲面。经典例子有悬链曲面、螺旋面、Scherk 曲面与 Enneper 曲面。新近发现的包括 Costa 极小曲面(Costa's minimal surface,1982年)与 Gyroid(Gyroid,1970年)。

极小曲面的一个推广是考虑平均曲率为非零常数的曲面,球面和圆柱面就是这样的例子。Heinz Hopf 的一个问题为是否存在曲率为非零常数的非球面闭曲面。球面是惟一具有常平均曲率且没有边界或奇点的曲面;如果允许自交,则存在平均曲率为非零常数的闭曲面,Wente 在1986年曾构造出这样的自交环面(陈维桓 2006,4.6节)。

相关

  • 黏菌黏菌,或作黏液霉菌(Slime mold),是一种原生生物,分类学上的名称为“Myxomycota”的次门级分类单元,意思是“真菌动物”,这样的名称表现了其外观与生活型态。它们保有变形虫的身体构
  • 人工智能人工智能(英语:Artificial Intelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词
  • 查莫罗人查莫罗人(西班牙语:Chamorro),又称查莫洛人,是对马里亚纳群岛上土著人的称呼。其中最为人们所了解的是关岛查莫罗人。查莫罗人属于密克罗尼西亚人种,在民族学界对其起源存在较大争
  • 苏珊·林德奎斯特苏珊·林德奎斯特(英语:Susan Lindquist,1949年6月5日-2016年10月27日),美国生物学家,麻省理工学院生物学教授,专门从事分子生物学,特别是朊毒体以及热休克蛋白的蛋白质折叠问题的研
  • 沃波尔罗伯特·沃波尔,第一代奥福德伯爵,KG,KB,PC(英语:Robert Walpole, 1st Earl of Orford,1676年8月26日-1745年3月18日,又译罗伯特·华尔波尔),英国辉格党政治家,罗伯特·沃波尔爵士(Sir Ro
  • 沃尔巴克氏体沃尔巴克氏体属(学名:Wolbachia)为立克次体目无形体科的一属,是一类感染节肢动物、包括很大部分昆虫以及一些线虫的细菌。它是世界上最常见的寄生微生物,可能是生物圈最常见的寄
  • 子宫畸形子宫畸形(uterine malformation),是指一类在胚胎期的苗勒管(英语:Müllerian duct)发育异常所导致的女性生殖器畸形(英语:female genital malformation)。症状包括闭经、不孕不育、复
  • 艾蒂安·若弗鲁瓦·圣伊莱尔艾蒂安·乔弗华·圣伊莱尔(法语:Étienne Geoffroy Saint-Hilaire,1772年4月15日-1844年6月19日),法国博物学家。1772年在塞纳-瓦兹省埃唐普出生,担任国家自然历史博物馆教授之前曾
  • 贵族爵位贵族爵位是一种世袭的贵族身份等级,爵位的拥有者享受与其爵位等级相对应的政治经济权利。贵族爵位一般具有其对应的等级体系,称为“贵族等级制度”或“爵位制度”,是一种在世界
  • 全球商品链全球商品链(Global Commodity Chains,缩写 GCC),这一概念最早是由美国杜克大学格里芬教授提出了的,为商品链的研究,提供了系统性的分析。格里芬强调GCC有四个部分必须去注意:另外,商