首页 >
正弦
✍ dations ◷ 2025-08-08 09:35:46 #正弦
在数学中,正弦(英语:sine、缩写
sin
{displaystyle sin }
)是一种周期函数,是三角函数的一种。它的定义域是整个实数集,值域是
[
−
1
,
1
]
{displaystyle }
。它是周期函数,其最小正周期为
2
π
{displaystyle 2pi }
。在自变量为
(
4
n
+
1
)
π
2
{displaystyle {frac {(4n+1)pi }{2}}}
(
n
{displaystyle n}
为整数)时,该函数有极大值1;在自变量为
(
4
n
+
3
)
π
2
{displaystyle {frac {(4n+3)pi }{2}}}
时,该函数有极小值-1。正弦函数是奇函数,其图像于原点对称。正弦的符号为
sin
{displaystyle sin }
,取自拉丁文sinus。而拉丁文sinus是来自阿拉伯文jiba的误译。阿拉伯文jiba来自梵文jya-ardha,意思是“半根弓弦”。以单位圆方式定义,如果把圆弧想象成一张弓,那幺正弦的就好像是弓弦的一半长。该符号最早由瑞士数学家欧拉所使用。在直角三角形中,一个锐角
∠
A
{displaystyle angle A}
的正弦定义为它的对边与斜边的比值,也就是:其定义与余割函数互为倒数。设
α
{displaystyle alpha }
是平面直角坐标系xOy中的一个象限角,
P
(
x
,
y
)
{displaystyle Pleft({x,y}right)}
是角的终边上一点,
r
=
x
2
+
y
2
>
0
{displaystyle r={sqrt {x^{2}+y^{2}}}>0}
是P到原点O的距离,则
α
{displaystyle alpha }
的正弦定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角
θ
{displaystyle theta }
,并与单位圆相交。这个交点的y坐标等于
sin
θ
{displaystyle sin theta }
。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了
sin
θ
=
y
1
{displaystyle sin theta ={frac {y}{1}}}
。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。对于大于
2
π
{displaystyle 2pi }
或小于
−
2
π
{displaystyle -2pi }
的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为2π的周期函数:对于任何角度
θ
{displaystyle theta }
和任何整数
k
{displaystyle k}
。由于正弦的导数是余弦,余弦的导数是负的正弦,因此正弦函数满足初值问题这就是正弦的微分方程定义。正弦函数的指数定义可由欧拉公式导出:正弦定理说明对于任意三角形,它的边是
a
{displaystyle a}
,
b
{displaystyle b}
和
c
{displaystyle c}
而相对这些边的角是
A
{displaystyle A}
,
B
{displaystyle B}
和
C
{displaystyle C}
,有:也表示为:它可以通过把三角形分为两个直角三角形并使用正弦的上述定义证明。在这个定理中出现的公共数
sin
A
a
{displaystyle {frac {sin A}{a}}}
是通过
A
{displaystyle A}
,
B
{displaystyle B}
和
C
{displaystyle C}
三点的圆的直径的倒数。正弦定理用于在一个三角形的两个角和一个边已知时计算未知边的长度。这是三角测量中常见情况。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 担子果在真菌当中,担子果(英语:basidiocarp、basidiome、basidioma,复数:basidiomata)是担子菌门的子实体,是一种多细胞构造,起源于孢子产生出来的子实层。担子果是伞菌纲的特征;柄锈菌纲与
- 阿巴拉契亚山脉阿巴拉契亚山脉(英语:Appalachian Mountains),又译阿帕拉契山脉,是北美洲东部的一座山系。南起美国的阿拉巴马州,北至加拿大的纽芬兰和拉布拉多省。最北部余脉则延伸到魁北克的加
- 陀瑟他《陀瑟他》(亚拉姆语:תוספתא,英语:Tosefta),犹太教的经典之一,源自于《米书拿》(Mishnah)的时代,是犹太口传律法的集合。《米书拿》(Mishnah)是犹太教口传律法的最基本部分,大约在
- 环境科学环境科学为跨学科领域专业,既包含像物理,化学,生物,地质学,地理,资源技术和工程等的物理科学,也含有像资源管理和保护,人口统计学,经济学,政治和伦理学等社会科学。环境科学包含了影响
- 罗马-菲乌米奇诺机场罗马-菲乌米奇诺“列奥那多·达芬奇”国际机场(意大利语:Aeroporto internazionale di Roma-Fiumicino "Leonardo da Vinci",IATA代码:FCO;ICAO代码:LIRF),是一座位于意大利拉齐奥大
- 轮形动物门见内文轮形动物门(学名:Rotifera),又称轮虫动物门,是动物界的一个门。是主要生活在淡水中的小型动物,约有1800种左右。轮形动物在假体腔动物中是相当繁盛的一类。身体短圆,有明亮的
- 约翰·巴考尔约翰·诺里斯·巴考尔(英语:John Norris Bahcall,1934年12月30日-2005年8月17日),美国天体物理学家,最知名于对太阳中微子问题的贡献,对哈勃空间望远镜的开发和对普林斯顿高级研究院
- 共和国广场共和广场(法语:Place de la République)是法国巴黎的一个广场,位于第三区、第十区和十一区的边界。它得名于法兰西第一、第二和第三共和国。在其地下是共和地铁站。在此交汇的
- 大不列颠岛坐标:53°49′34″N 2°25′19″W / 53.826°N 2.422°W / 53.826; -2.422大不列颠岛(英语:Great Britain;苏格兰盖尔语:Breatainn Mhòr;威尔士语:Prydain Fawr;Cornish:Breten Veur
- 切斯特·艾伦·阿瑟切斯特·艾伦·阿瑟(Chester Alan Arthur,1829年10月5日-1886年11月18日),美国律师及政治人物,第21任美国总统,共和党人。原为詹姆斯·加菲尔德的副总统,两人于1880年搭档参选。1881