正弦

✍ dations ◷ 2025-09-13 22:19:23 #正弦
在数学中,正弦(英语:sine、缩写 sin {displaystyle sin } )是一种周期函数,是三角函数的一种。它的定义域是整个实数集,值域是 [ − 1 , 1 ] {displaystyle } 。它是周期函数,其最小正周期为 2 π {displaystyle 2pi } 。在自变量为 ( 4 n + 1 ) π 2 {displaystyle {frac {(4n+1)pi }{2}}} ( n {displaystyle n} 为整数)时,该函数有极大值1;在自变量为 ( 4 n + 3 ) π 2 {displaystyle {frac {(4n+3)pi }{2}}} 时,该函数有极小值-1。正弦函数是奇函数,其图像于原点对称。正弦的符号为 sin {displaystyle sin } ,取自拉丁文sinus。而拉丁文sinus是来自阿拉伯文jiba的误译。阿拉伯文jiba来自梵文jya-ardha,意思是“半根弓弦”。以单位圆方式定义,如果把圆弧想象成一张弓,那幺正弦的就好像是弓弦的一半长。该符号最早由瑞士数学家欧拉所使用。在直角三角形中,一个锐角 ∠ A {displaystyle angle A} 的正弦定义为它的对边与斜边的比值,也就是:其定义与余割函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则 α {displaystyle alpha } 的正弦定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交。这个交点的y坐标等于 sin ⁡ θ {displaystyle sin theta } 。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了 sin ⁡ θ = y 1 {displaystyle sin theta ={frac {y}{1}}} 。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为2π的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。由于正弦的导数是余弦,余弦的导数是负的正弦,因此正弦函数满足初值问题这就是正弦的微分方程定义。正弦函数的指数定义可由欧拉公式导出:正弦定理说明对于任意三角形,它的边是 a {displaystyle a} , b {displaystyle b} 和 c {displaystyle c} 而相对这些边的角是 A {displaystyle A} , B {displaystyle B} 和 C {displaystyle C} ,有:也表示为:它可以通过把三角形分为两个直角三角形并使用正弦的上述定义证明。在这个定理中出现的公共数 sin ⁡ A a {displaystyle {frac {sin A}{a}}} 是通过 A {displaystyle A} , B {displaystyle B} 和 C {displaystyle C} 三点的圆的直径的倒数。正弦定理用于在一个三角形的两个角和一个边已知时计算未知边的长度。这是三角测量中常见情况。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 穆斯林的征服萨珊王朝可萨人(英语:Arab–Khazar wars)河中地区(英语:Muslim conquest of Transoxiana)西哥德王国(西班牙)(英语:Umayyad conquest of Hispania)穆斯林的征服(阿拉伯语:الفتوحا
  • LDL低密度脂蛋白(英语:low-density lipoprotein,缩写为LDL)指一类及范围的脂蛋白粒子,有着约18-25纳米直径的大小,负责在血液内运载脂肪酸分子至全身供细胞使用。它是由肝脏所产生的
  • 克罗马侬人克罗马侬人(英语:Cro-Magnon,又译克洛曼侬人或克鲁麦农人)是智人(Homo sapiens,其中包括所有现代人类)中的一支,生存于旧石器时代晚期。原来是指发现于法国西南部克罗马侬(法语:Crô-M
  • 无意识潜意识人之某些欲望常不为现实社会所接受,该欲望并不会因为一时的无法实现而消失于无形,该欲望一方面受到接踵而来的众多欲望所挤压,以至将其挤压至意识无法察觉的深处,另一方面
  • 同源异形盒结构 / ECOD同源(异形)框(英语:Homeobox),或称“同源匣”是某些影响动物、真菌及植物发育的基因所拥有的一段DNA序列,拥有同源框的基因称作同源异形基因,统称同源异形基因家族。这段
  • 1896年雅典奥运会第一届夏季奥林匹克运动会(英语:the Games of the I Olympiad;法语:les Jeux de la Ière olympiade;希腊语:οι Αγώνες της 1ης Ολυμπιάδας,Therinoí Olym
  • 荒岛荒岛(又称无人岛、无居民岛;英文:desert island)是一个无人居住或人口稀少的岛。在世界上,荒岛比有人岛还要多。除了地理上的概念,荒岛也常用于文学、比喻和大众想象,指一个人或一
  • 日本莽草素日本莽草素具有高度的毒性,是由日本莽草萃取出的具有杀虫活性的物质。在日本使用于民俗疗法之中,但是食入时会导致死亡。症状会在食入后 1–6小时后发作,开始时是腹泻、呕吐和
  • 班贝格班贝格(德语:Bamberg),也译作班堡、班贝克或巴姆贝格,是德国巴伐利亚州的无属县城市,位于巴伐利亚北部,隶属于上弗兰肯行政区,也是班贝格县的首府。班贝格是一座大学城和行政城市,是
  • 吕讷堡石楠草原吕讷堡石楠草原(德语:Lüneburger Heide),是德国下萨克森的一个地域。该草原地带覆盖了汉堡、汉诺威和不莱梅等几个德国主要城市,现在下萨克森的北部地区都普遍被视为是“吕讷堡