首页 >
正弦
✍ dations ◷ 2025-11-13 00:48:26 #正弦
在数学中,正弦(英语:sine、缩写
sin
{displaystyle sin }
)是一种周期函数,是三角函数的一种。它的定义域是整个实数集,值域是
[
−
1
,
1
]
{displaystyle }
。它是周期函数,其最小正周期为
2
π
{displaystyle 2pi }
。在自变量为
(
4
n
+
1
)
π
2
{displaystyle {frac {(4n+1)pi }{2}}}
(
n
{displaystyle n}
为整数)时,该函数有极大值1;在自变量为
(
4
n
+
3
)
π
2
{displaystyle {frac {(4n+3)pi }{2}}}
时,该函数有极小值-1。正弦函数是奇函数,其图像于原点对称。正弦的符号为
sin
{displaystyle sin }
,取自拉丁文sinus。而拉丁文sinus是来自阿拉伯文jiba的误译。阿拉伯文jiba来自梵文jya-ardha,意思是“半根弓弦”。以单位圆方式定义,如果把圆弧想象成一张弓,那幺正弦的就好像是弓弦的一半长。该符号最早由瑞士数学家欧拉所使用。在直角三角形中,一个锐角
∠
A
{displaystyle angle A}
的正弦定义为它的对边与斜边的比值,也就是:其定义与余割函数互为倒数。设
α
{displaystyle alpha }
是平面直角坐标系xOy中的一个象限角,
P
(
x
,
y
)
{displaystyle Pleft({x,y}right)}
是角的终边上一点,
r
=
x
2
+
y
2
>
0
{displaystyle r={sqrt {x^{2}+y^{2}}}>0}
是P到原点O的距离,则
α
{displaystyle alpha }
的正弦定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角
θ
{displaystyle theta }
,并与单位圆相交。这个交点的y坐标等于
sin
θ
{displaystyle sin theta }
。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了
sin
θ
=
y
1
{displaystyle sin theta ={frac {y}{1}}}
。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。对于大于
2
π
{displaystyle 2pi }
或小于
−
2
π
{displaystyle -2pi }
的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为2π的周期函数:对于任何角度
θ
{displaystyle theta }
和任何整数
k
{displaystyle k}
。由于正弦的导数是余弦,余弦的导数是负的正弦,因此正弦函数满足初值问题这就是正弦的微分方程定义。正弦函数的指数定义可由欧拉公式导出:正弦定理说明对于任意三角形,它的边是
a
{displaystyle a}
,
b
{displaystyle b}
和
c
{displaystyle c}
而相对这些边的角是
A
{displaystyle A}
,
B
{displaystyle B}
和
C
{displaystyle C}
,有:也表示为:它可以通过把三角形分为两个直角三角形并使用正弦的上述定义证明。在这个定理中出现的公共数
sin
A
a
{displaystyle {frac {sin A}{a}}}
是通过
A
{displaystyle A}
,
B
{displaystyle B}
和
C
{displaystyle C}
三点的圆的直径的倒数。正弦定理用于在一个三角形的两个角和一个边已知时计算未知边的长度。这是三角测量中常见情况。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 非编码DNA非编码DNA(英语:Non-Coding DNA,或称“垃圾DNA”),是指不包含制造蛋白质的指令,或是只能制造出无翻译能力RNA的DNA序列。此类DNA在真核生物的基因组中占有大多数。有很长的一段时
- 意大利体在拉丁字母的字体排印学中,意大利体(英语:Italic type)是一种手写体印刷字形,是斜体的一种。因为受到手写书法的影响,意大利体的字形微向右倾斜,其字母写法也接近于手写体,成为其主
- 单细胞生物可以根据构成的细胞数目分为单细胞生物和多细胞生物。单细胞生物只由单个细胞组成,而且经常会聚集成为细胞集落。单细胞生物能独立完成新陈代谢及繁殖等活动。地球上最早
- 头发角蛋白发角蛋白或毛发角蛋白(英语:Hair keratin)是一类在头发和指甲中发现的角蛋白。存在两类毛发角蛋白:
- 波士顿大学上的组织学:大红和白色波士顿大学(Boston University, 通常简称 BU 或 Boston U)是一所位于美国马萨诸塞州波士顿的著名私立研究型大学。该校主校区位于波士顿查尔士河河畔的现址。该校于
- 噻托溴铵噻托溴铵(英语:Tiotropium bromide),一种治疗慢性阻塞性肺病(COPD)的长效(24小时)抗胆碱能支气管扩张药,勃林格殷格翰和辉瑞共同推出商品名为Spiriva的吸入式胶囊。
- 唐 勇唐勇(1964年9月12日-),四川井研人。有机化学家。1986年毕业于四川师范大学化学系,1992年和1996年在中国科学院上海有机化学研究所分别获硕士学位和博士学位。1996年3月至1996年7
- 有价证券证券(Securities)是有价证券的简称,是一种表示财产权的有价凭证,持有者可以依据此凭证,证明其所有权或债权等私权的证明文件。例如:股票、债券、权证和股票价款缴纳凭证等。证券也
- 国家癌症研究中心国家癌症研究所是美国政府为癌症研究和训练所设立的主要机构,也是美国国立健康研究院的其中一所。国家癌症研究中心是一个被联邦资助的研究与发展中心。该中心协调全国癌症计
- 中国核心利益中国核心利益是指中华人民共和国的国家主权、安全、领土完整和发展的利益。中华人民共和国武装力量是维护国家核心利益的保障。2011年9月6日,中国政府发表《中国的和平发展》
