首页 >
幂集
✍ dations ◷ 2024-11-05 05:40:13 #幂集
数学上,给定集合
S
{displaystyle S}
,其幂集
P
(
S
)
{displaystyle {mathcal {P}}(S)}
(或作
2
S
{displaystyle 2^{S}}
)是以
S
{displaystyle S}
的全部子集为元素的集合(注意:空集合也是幂集的元素)。以符号表示即为在公理集合论(例如ZFC集合论)中,幂集公理假定了任何集合的幂集均存在。P
(
S
)
{displaystyle {mathcal {P}}(S)}
的任何子集合
F
{displaystyle F}
称为
S
{displaystyle S}
上的集族若
S
{displaystyle S}
是集合
{
a
,
b
,
c
}
{displaystyle {a,b,c}}
,则
S
{displaystyle S}
的全部子集如下:因此
S
{displaystyle S}
的幂集为若
S
{displaystyle S}
是有限集,有
|
S
|
=
n
{displaystyle |S|=n}
个元素,那么
S
{displaystyle S}
的幂集有
|
P
(
S
)
|
=
2
n
{displaystyle |{mathcal {P}}(S)|=2^{n}}
个元素。(其实可以——事实上电脑就是这样做的——将
P
(
S
)
{displaystyle {mathcal {P}}(S)}
的元素表示为n位二进制数;第n位表示包含或不含
S
{displaystyle S}
的第n个元素。这样的数总共有
2
n
{displaystyle 2^{n}}
个。)我们也可以考虑无穷集的幂集。以对角论证法可证明一个集合(不论是否无穷)的幂集的基数总是大于原来集合的基数(粗略的说,集合的幂集必然大于原来集合),详见康托尔定理。例如正整数集的幂集可以一一对应于实数集(把一个无穷0-1序列对应于那些包含有1出现的指数的集合。例如,
{
1
,
3
}
{displaystyle {1,3}}
对应于序列
(
1
,
0
,
1
,
0
,
0
,
0
,
…
)
{displaystyle (1,0,1,0,0,0,ldots )}
,
{
2
,
4
,
6
,
8
,
…
}
{displaystyle {2,4,6,8,ldots }}
对应于序列
(
0
,
1
,
0
,
1
,
0
,
1
,
0
,
1
,
…
)
{displaystyle (0,1,0,1,0,1,0,1,ldots )}
)。集合
S
{displaystyle S}
的幂集,加上并、交和补运算,就得出布尔代数的原始例子。事实上,我们可以证明所有有限布尔代数都是同构于某有限集的幂集的布尔代数。这结果虽然对无穷布尔代数不成立,但是所有无穷布尔代数都是某个幂集布尔代数的子代数。集合
S
{displaystyle S}
的幂集与对称差运算构成一个阿贝尔群(其中空集为幺元,每个集合的逆元为其本身),与交运算一起则构成交换半群。因此这两个运算跟幂集(透过证明分配律)一起构成一个交换环。在集合论中,
X
Y
{displaystyle X^{Y}}
是由所有从
Y
{displaystyle Y}
到
X
{displaystyle X}
的函数构成的集合。因为
2
{displaystyle 2}
可以定义为
{
0
,
1
}
{displaystyle {0,1}}
(见自然数),
2
S
{displaystyle 2^{S}}
这集合包含了所有从
S
{displaystyle S}
到
{
0
,
1
}
{displaystyle {0,1}}
的函数。把
2
S
{displaystyle 2^{S}}
内的函数对应于由这函数给出的
1
{displaystyle 1}
的原像,可看出在
2
S
{displaystyle 2^{S}}
和
P
(
S
)
{displaystyle {mathcal {P}}(S)}
之间存在双射,其中每个函数是
P
(
S
)
{displaystyle {mathcal {P}}(S)}
中这函数所对应的子集的特征函数。所以就集合论来说
2
S
{displaystyle 2^{S}}
和
P
(
S
)
{displaystyle {mathcal {P}}(S)}
是相同的。
相关
- 亲缘分支分类法支序分类学(英语:Cladistics)又称亲缘分支分类学,是一种生物分类的哲学,其指只依据演化树分支的顺序,而不参考形态上的相似性来排列物种。此一学派的主要贡献者一般认为是德国昆虫
- 垂体脑下垂体(法语、德语: Hypophyse,英语:pituitary gland,亦称为脑垂体)位于脑底部的中央位置,在蝶骨中的蝶鞍内,它的上方有视神经经过,两侧被海绵静脉窦所包围,它的底部为蝶窦及鼻咽。
- 生长因子生长因子(英文:Growth factor)一词是指天然的蛋白能刺激细胞增殖和细胞分化。生长因子调节细胞的各类活动与功能。生长因子通常充当细胞间的信号分子。生长因子结合到靶细胞
- 产气荚膜梭菌产气荚膜杆菌(学名:Clostridium perfringens)是革兰氏阳性杆状厌氧菌,因能分解肌肉和结缔组织中的糖类而产出大量气体以及可以在体内能形成荚膜而得名。发现于人类和其他脊椎动
- 纯合纯合子(英语:homozygote),亦称同型合子,在遗传学上,二倍体生物的某个基因座上拥有相同的等位基因,而基因型和基因的表现型也是完全相同和对等。例如“AA”、“OO”。
- 黑人黑人,即黑色人种,又称尼格罗人种,尼格罗-澳大利亚人种、赤道人种、刚果人种,是人类分类学说里的一种人种。现今黑人大多聚居于非洲和美洲,另外,安达曼群岛、尼科巴群岛、美拉尼西亚
- 氢键氢键是分子间作用力的一种,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是
- 科洛尼斯希腊神话中有数个以科洛尼斯(Coronis ,Κορωνίς)为名的人物,因其不同意义而具有多重艺术形象,也是金牛座毕星团的溯源之一。这些人物包括:
- 女隐修院院长女隐修院院长(英语:Abbess)天主教本笃会的隐修女团体、圣方济各第二会以及其他修会女隐修院的负责人。其年龄在40岁以上,隐修超过10年,由本主教管区主教举行仪式任命,并授予表示职
- 粗细字型或字模(英语:font;传统英式英语:fount)是指印刷行业中某一整套具有同样样式、字重和尺码的字形,例如一整套用于内文的宋体5号字、一整套用于标题的10号字就叫一套字型。电脑早