无限大

✍ dations ◷ 2025-12-10 12:08:12 #无限大
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }无穷或无限大,来自于拉丁文的“infinitas”,即“没有边界”的意思。其数学符号为∞。它在科学、神学、哲学、数学和日常生活中有着不同的概念。通常使用这个词的时候并不涉及它的更加技术层面的定义。在神学方面,根据书面记载无穷这个符号最早被用于某些秘密宗教,通常代表人类中的神性,而书写此符号时两圆的不对等代表人神间的差距,例如神学家邓斯·司各脱(Duns Scotus)的著作中,上帝的无限能量是运用在无约束上,而不是运用在无限量上。在哲学方面,无穷可以归因于空间和时间。在神学和哲学两方面,无穷又作为无限,很多文章都探讨过无限、绝对、上帝和芝诺悖论等的问题。在数学方面,无穷与下述的主题或概念相关:数学的极限、阿列夫数、集合论中的类、戴德金无限集合(英语:Dedekind-infinite set)、罗素悖论、超实数、射影几何、扩展的实轴以及绝对无限。在一些主题或概念中,无穷被认为是一个超越边界而增加的概念,而不是一个数。最早关于无限的记载出现在印度的夜柔吠陀(公元前1200-900)。书中说:“如果你从无限中移走或添加一部分,剩下的还是无限。”印度耆那教的经书《Surya Prajnapti》(c. 400 BC) 把数分作三类:“可计的”、“不可计的”及“无限”。每一类再细分成三种阶:现代科学家解析古代羊皮卷中的阿基米德手稿(Archimedes Palimpsest(英语:Archimedes Palimpsest)),在残卷《方法》命题14中,发现阿基米德开始计算无穷大的数目。他采取近似于19世纪微积分与集合论的手法,计算了两组无穷大的集合,以求和的方法,证明它们之间的数目是相等的。这是在人类记载上第一次出现无限也可以分类这一个念头。伽利略最先发现一个集合跟它自己的真子集可以有相同的大小。他用上一一对应的概念说明自然数集{1, 2, 3, 4 ...}跟子集平方数集{1,4,9,16,...}一样多。就是1→1、2→4、3→9、4→16、.....一一对应正是用于研究无限必要的手法。无限大的符号是 ∞ {displaystyle infty } ,其Unicode为.mw-parser-output .monospaced{font-family:"Menlo","Consolas","Liberation Mono","Courier New",monospace} U+221E ∞ .mw-parser-output .smallcaps-all{font-variant:small-caps;text-transform:lowercase}.mw-parser-output .smallcaps-all *{font-variant:normal;text-transform:none}INFINITY,在LaTeX中表示为infty。无限大的符号是1655年由约翰·沃利斯开始使用,在开始使用后,也用在数学以外的领域,例如现代神秘主义及符号学。莱布尼茨是微积分的发明者之一,他提出许多有关无穷大及其在数学中应用的猜测。对莱布尼茨而言,无穷大和无穷小量都是理想的实体,和一般数值的本质不同,不过有类似的性质。在实分析中,符号 ∞ {displaystyle infty } 称为“无穷大”,代表无界极限。 x → + ∞ {displaystyle xto +infty } 表示 x {displaystyle xquad } 超出任意给定值, x → − ∞ {displaystyle xto -infty } 表示 x {displaystyle xquad } 最终小于任意给定值。一函数积分的结果可能会是无限大,若对于所有的t,f(t) ≥ 0,则无穷大也可以用来描述无穷级数:若将标记为 + ∞ {displaystyle +infty } 和 − ∞ {displaystyle -infty } 的点加入到实数组成的拓扑空间,就产生实数集的“两点紧致化”。再加入代数属性,就得到了扩展的实数轴。也可将 + ∞ {displaystyle +infty } 和 − ∞ {displaystyle -infty } 作为一个点,记作 ∞ {displaystyle infty } ,并得到实数的“一点紧致化”,也就是实射影线(英语:Real projective line)。射影几何在平面几何上引入无穷远线,在高维上也有类似概念。在复变分析中符号 ∞ {displaystyle infty } 是指没有正负号的极限值。 x → ∞ {displaystyle xrightarrow infty } 是指x的大小  | x | {displaystyle |x|} 会超过任意给定的数值。可以在复平面上加上无穷远点,变成一个拓扑空间,即为复平面的一点紧化。若完成后,所得的平面是一维的复流形或黎曼曲面,称为黎曼球面。也可以定义在其上的代数运算(不过有一个例外,无限大不能和本身相加)。另一方面,有无限大表示可以除以零,而对于任何不为0的复数z, z 0 = ∞ {displaystyle {frac {z}{0}}=infty } ,因此可以将亚纯函数对映到黎曼球面上,只要将极点对应到无穷远点 ∞ {displaystyle infty } 即可。复变函数的定义域也可以加入无穷远点,例如莫比乌斯变换的函数。一般讲无穷指的都是无穷大,但是无穷小也是一种无穷。通过 y = 1 x {displaystyle y={frac {1}{x}}} 的映射即可把无穷大映射为无穷小。在微积分中,常用高阶无穷小的概念。无穷远点是一个加在实轴上后得到实射影直线 R P 1 {displaystyle mathbb {R} P^{1}} 的点。在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。这里比较不同的无穷的“大小”的时候,唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的基数。例如,无限维的空间常用在几何学及拓扑学中,尤其是在分类空间(英语:classifying space),也就是Eilenberg−MacLane空间(英语:Eilenberg−MacLane space)。常见的例子包括无限维的复射影空间(英语:complex projective space)K(Z,2),以及无限维的实射影空间K(Z/2Z,1)。分形的结构可以重复的放大,分形可以无限次的放大,但不会变的圆滑,而且仍维持原有的结构,分形的周长是无限的,有些的面积无限,但有些的面积却是有限。像科赫曲线就是有无限周长和有限面积的例子。利奥波德·克罗内克怀疑无限的概念,也怀疑1870年代及1880年代时数学家使用无限的方式。这种怀疑主义形成一种称为有限主义的数学哲学,是属于数学结构主义及数学直觉主义中的一种极端形式。在物理上,实数的近似会用在连续量(英语:Continuum (theory))的量测上,自然数的近似会用在离散的量测上。因此科学家假设没有可观察量会到无穷的数值,这是因为科学家很自然的,事实上已经是默认的接受了这样的事情:即在真实的物理场景里,是不存无穷大的可观测物理量的。在例如在扩展的实轴上取一个无穷的值,或是需要计算某个无穷次事件的次数。因此会预设没有任何物体会有无穷的质量或是能量。有些事物的概念和无限有关,例如无限平面波,但现今尚没有方法可以由实验产生无限平面波。IEEE 754浮点数标准中定义了正无限大及负无限大,定义为溢位、除以零或其他异常程序的结果。像Java及J语言等编程语言允许在程式中直接用类似常数的方式存取正负无限大。正负无限大可以作为最大元,因为比所有其他的数都大(或是小)。正负无限大也可以做为像排序、搜寻或窗函数等算法中的哨兵值(英语:sentinel value),找到这个值时可以结束计算。在一些没有最大或最小元素,但允许关系运算子多载的编程语言中,程序员也可以“创建”最大及最小元素。若语言不允许直接存取最大或最小元素,但有浮点数的形态,也可以用特定的运算产生正负无限大,再进行其他处理。微软的 Visual Studio 用无穷大符号作为图标。透视艺术使用了消失点或是无穷远点的概念.也就是放在观察者无穷远处的一个点。因此画家可以绘制有现实感空间及距离的作品。艺术家莫里茨·科内利斯·埃舍尔就常将无穷的概念用在他的作品中。认知科学家乔治·莱考夫将数学及科学中无限的概念视为一个隐喻。这个观点是基于简单的无限隐喻,定义为一直递增的数列<1,2,3,...>。无限的符号常浪漫的表示永恒的爱,许多现代的珠宝就在其造型中加入无限的符号。Crypton Future Media 的角色主唱系列中 CV-03 巡音流歌的人物形象即包含无穷大的符号以象征“循环、巡回”之意。

相关

  • 康恩氏综合征原发性高醛固酮症(Primary aldosteronism),又称康氏症(Conn's syndrome),是肾上腺生产过量醛固酮而造成肾素水平下降而导致的一种疾病,通常症状不严重。大多数人会引起高血压,导致视
  • 微孢子虫门微孢子虫(学名:Microsporidia)为罗兹菌门下的一纲。它是由孢子形成的单细胞寄生虫。目前多于一百万种微孢子虫中的1500种版命名。微孢子虫只能寄生于动物宿主。大部分的动物物
  • 甾体甾体(英语:steroid)是属于脂类的一类,特征是有一个四环的母核。所有甾体都是从乙酰辅酶A生物合成路径所衍生的。不同的甾体在其附在环上的官能团有所不同,而其基本结构都是有一个
  • 爱尔兰皇家外科医学院爱尔兰皇家外科医学院,英文名Royal College of Surgeons in Ireland,简称RCSI。成立于1784年,是所私立医学院。爱尔兰皇家外科医学院位于爱尔兰的都柏林市。由于爱尔兰共和国曾
  • 苯乙醚苯乙醚,又称为乙氧基苯,是一种醚类有机化合物,具有醚类的化学性质(如易挥发、易爆、可以形成过氧化物);它同时也是一种苯的衍生物。用于有机合成中。无色油状有芳香气味的液体。难
  • 丁福保丁福保(1874年6月22日-1952年11月28日),字仲祐,号畴隐居士,籍贯江苏常州,生于无锡。中华民国及中华人民共和国佛教居士,翻译家,古钱币、古籍收藏家,医生。幼通经史,长而中西兼贯,长于算
  • 植被植被是地球表面所覆盖的植物的总称。它是一个植物学、生态学、农学和地球科学的名词。植被可以因为生长环境的不同而被分类,譬如高山植被、草原植被、海岛植被等。环境因素如
  • 比较基因组学比较基因组学(Comparative genomics)是基于基因组图谱和测序技术,对已知的基因特征和基因组结构进行比较以了解基因的功能、表达机制和不同物种亲缘关系的生物学研究。基因组
  • LNA锁核酸(Locked nucleic acid,LNA)是一种经过修饰的RNA,LNA中一部分核糖上的2'与4'碳连结在一起。一般可见于A-DNA或RNA。这类核酸可以增加引子或探针(probe)的融解温度(Tm值),加强这
  • 太平御览《太平御览》初名《太平类编》、《太平编类》,后改名为《太平御览》。是北宋时期编写的一部类书,是保存了五代以前文献最多的一部类书。《太平御览》与《太平广记》、《 文苑