无限大

✍ dations ◷ 2025-09-18 17:43:53 #无限大
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }无穷或无限大,来自于拉丁文的“infinitas”,即“没有边界”的意思。其数学符号为∞。它在科学、神学、哲学、数学和日常生活中有着不同的概念。通常使用这个词的时候并不涉及它的更加技术层面的定义。在神学方面,根据书面记载无穷这个符号最早被用于某些秘密宗教,通常代表人类中的神性,而书写此符号时两圆的不对等代表人神间的差距,例如神学家邓斯·司各脱(Duns Scotus)的著作中,上帝的无限能量是运用在无约束上,而不是运用在无限量上。在哲学方面,无穷可以归因于空间和时间。在神学和哲学两方面,无穷又作为无限,很多文章都探讨过无限、绝对、上帝和芝诺悖论等的问题。在数学方面,无穷与下述的主题或概念相关:数学的极限、阿列夫数、集合论中的类、戴德金无限集合(英语:Dedekind-infinite set)、罗素悖论、超实数、射影几何、扩展的实轴以及绝对无限。在一些主题或概念中,无穷被认为是一个超越边界而增加的概念,而不是一个数。最早关于无限的记载出现在印度的夜柔吠陀(公元前1200-900)。书中说:“如果你从无限中移走或添加一部分,剩下的还是无限。”印度耆那教的经书《Surya Prajnapti》(c. 400 BC) 把数分作三类:“可计的”、“不可计的”及“无限”。每一类再细分成三种阶:现代科学家解析古代羊皮卷中的阿基米德手稿(Archimedes Palimpsest(英语:Archimedes Palimpsest)),在残卷《方法》命题14中,发现阿基米德开始计算无穷大的数目。他采取近似于19世纪微积分与集合论的手法,计算了两组无穷大的集合,以求和的方法,证明它们之间的数目是相等的。这是在人类记载上第一次出现无限也可以分类这一个念头。伽利略最先发现一个集合跟它自己的真子集可以有相同的大小。他用上一一对应的概念说明自然数集{1, 2, 3, 4 ...}跟子集平方数集{1,4,9,16,...}一样多。就是1→1、2→4、3→9、4→16、.....一一对应正是用于研究无限必要的手法。无限大的符号是 ∞ {displaystyle infty } ,其Unicode为.mw-parser-output .monospaced{font-family:"Menlo","Consolas","Liberation Mono","Courier New",monospace} U+221E ∞ .mw-parser-output .smallcaps-all{font-variant:small-caps;text-transform:lowercase}.mw-parser-output .smallcaps-all *{font-variant:normal;text-transform:none}INFINITY,在LaTeX中表示为infty。无限大的符号是1655年由约翰·沃利斯开始使用,在开始使用后,也用在数学以外的领域,例如现代神秘主义及符号学。莱布尼茨是微积分的发明者之一,他提出许多有关无穷大及其在数学中应用的猜测。对莱布尼茨而言,无穷大和无穷小量都是理想的实体,和一般数值的本质不同,不过有类似的性质。在实分析中,符号 ∞ {displaystyle infty } 称为“无穷大”,代表无界极限。 x → + ∞ {displaystyle xto +infty } 表示 x {displaystyle xquad } 超出任意给定值, x → − ∞ {displaystyle xto -infty } 表示 x {displaystyle xquad } 最终小于任意给定值。一函数积分的结果可能会是无限大,若对于所有的t,f(t) ≥ 0,则无穷大也可以用来描述无穷级数:若将标记为 + ∞ {displaystyle +infty } 和 − ∞ {displaystyle -infty } 的点加入到实数组成的拓扑空间,就产生实数集的“两点紧致化”。再加入代数属性,就得到了扩展的实数轴。也可将 + ∞ {displaystyle +infty } 和 − ∞ {displaystyle -infty } 作为一个点,记作 ∞ {displaystyle infty } ,并得到实数的“一点紧致化”,也就是实射影线(英语:Real projective line)。射影几何在平面几何上引入无穷远线,在高维上也有类似概念。在复变分析中符号 ∞ {displaystyle infty } 是指没有正负号的极限值。 x → ∞ {displaystyle xrightarrow infty } 是指x的大小  | x | {displaystyle |x|} 会超过任意给定的数值。可以在复平面上加上无穷远点,变成一个拓扑空间,即为复平面的一点紧化。若完成后,所得的平面是一维的复流形或黎曼曲面,称为黎曼球面。也可以定义在其上的代数运算(不过有一个例外,无限大不能和本身相加)。另一方面,有无限大表示可以除以零,而对于任何不为0的复数z, z 0 = ∞ {displaystyle {frac {z}{0}}=infty } ,因此可以将亚纯函数对映到黎曼球面上,只要将极点对应到无穷远点 ∞ {displaystyle infty } 即可。复变函数的定义域也可以加入无穷远点,例如莫比乌斯变换的函数。一般讲无穷指的都是无穷大,但是无穷小也是一种无穷。通过 y = 1 x {displaystyle y={frac {1}{x}}} 的映射即可把无穷大映射为无穷小。在微积分中,常用高阶无穷小的概念。无穷远点是一个加在实轴上后得到实射影直线 R P 1 {displaystyle mathbb {R} P^{1}} 的点。在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。这里比较不同的无穷的“大小”的时候,唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的基数。例如,无限维的空间常用在几何学及拓扑学中,尤其是在分类空间(英语:classifying space),也就是Eilenberg−MacLane空间(英语:Eilenberg−MacLane space)。常见的例子包括无限维的复射影空间(英语:complex projective space)K(Z,2),以及无限维的实射影空间K(Z/2Z,1)。分形的结构可以重复的放大,分形可以无限次的放大,但不会变的圆滑,而且仍维持原有的结构,分形的周长是无限的,有些的面积无限,但有些的面积却是有限。像科赫曲线就是有无限周长和有限面积的例子。利奥波德·克罗内克怀疑无限的概念,也怀疑1870年代及1880年代时数学家使用无限的方式。这种怀疑主义形成一种称为有限主义的数学哲学,是属于数学结构主义及数学直觉主义中的一种极端形式。在物理上,实数的近似会用在连续量(英语:Continuum (theory))的量测上,自然数的近似会用在离散的量测上。因此科学家假设没有可观察量会到无穷的数值,这是因为科学家很自然的,事实上已经是默认的接受了这样的事情:即在真实的物理场景里,是不存无穷大的可观测物理量的。在例如在扩展的实轴上取一个无穷的值,或是需要计算某个无穷次事件的次数。因此会预设没有任何物体会有无穷的质量或是能量。有些事物的概念和无限有关,例如无限平面波,但现今尚没有方法可以由实验产生无限平面波。IEEE 754浮点数标准中定义了正无限大及负无限大,定义为溢位、除以零或其他异常程序的结果。像Java及J语言等编程语言允许在程式中直接用类似常数的方式存取正负无限大。正负无限大可以作为最大元,因为比所有其他的数都大(或是小)。正负无限大也可以做为像排序、搜寻或窗函数等算法中的哨兵值(英语:sentinel value),找到这个值时可以结束计算。在一些没有最大或最小元素,但允许关系运算子多载的编程语言中,程序员也可以“创建”最大及最小元素。若语言不允许直接存取最大或最小元素,但有浮点数的形态,也可以用特定的运算产生正负无限大,再进行其他处理。微软的 Visual Studio 用无穷大符号作为图标。透视艺术使用了消失点或是无穷远点的概念.也就是放在观察者无穷远处的一个点。因此画家可以绘制有现实感空间及距离的作品。艺术家莫里茨·科内利斯·埃舍尔就常将无穷的概念用在他的作品中。认知科学家乔治·莱考夫将数学及科学中无限的概念视为一个隐喻。这个观点是基于简单的无限隐喻,定义为一直递增的数列<1,2,3,...>。无限的符号常浪漫的表示永恒的爱,许多现代的珠宝就在其造型中加入无限的符号。Crypton Future Media 的角色主唱系列中 CV-03 巡音流歌的人物形象即包含无穷大的符号以象征“循环、巡回”之意。

相关

  • 核蛋白核蛋白是指与核酸(脱氧核糖核酸,DNA或者核糖核酸,RNA)有关的任何蛋白质。譬如,组织蛋白类型的蛋白-染色质。端粒酶,核糖核蛋白和精蛋白都是核蛋白。典型的核蛋白包括核糖体,核小体和
  • 吞噬细胞吞噬细胞为一类防卫细胞,它们透过吞噬细菌、坏死细胞和凋亡细胞等有害物质来保卫有机体。其原文“Phagocytes”的前半部来自希腊语“phagein”(意为“食用、吞食”),后半部“-cy
  • 人民美国人,是世界上对于与美国有关的人士的指称,通常是指美国公民、美国国民,或者祖先、直系尊亲属是美国公民或国民的其他地区人士。依据美国公民出生地原则,一般来说,出生于美国各
  • 麦可·法拉第迈克尔·法拉第(英语:Michael Faraday,1791年9月22日-1867年8月25日),英国物理学家,在电磁学及电化学领域做出许多重要贡献,其中主要的贡献为电磁感应、抗磁性、电解。虽然法拉第没
  • 榆树榆树,是榆科下榆属植物的统称,主要在北半球的温带地区生长。一般高约25米,树皮粗糙。具高度实用、药用及食用价值。榆树的叶呈椭圆形或椭圆状波针形,叶长2-8厘米、宽1.5-2.5厘米
  • 透射电子显微镜透射电子显微镜(英语:Transmission electron microscope,缩写:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生
  • 亨利·莫莱森亨利·古斯塔夫·莫莱森(英语:Henry Gustav Molaison,1926年2月26日-2008年12月2日),在医学界以 H.M.知名。他是一位美国籍的记忆障碍(英语:memory disorder)患者,原因是因为他曾罹患
  • 变构调节别构调节(Allosteric regulation,源自希腊语allos——“其他”、stereos——“固态(物体)”)又称变构调节、异构调节或是异位调节,是酶活性调节的一种机制,也称为变构调节。其原理
  • 矿石矿石,是指含有金属等重要元素成分矿物的岩石。矿石中常含有多种矿物,用应用价值的称为矿石矿物;与矿石矿物伴生,尚无法利用的矿物称为脉石矿物(脉石矿物与矿石矿物的划分不是绝对
  • 南特南特(法语:Nantes,布列塔尼语:Naoned)是法国西北部大西洋沿岸重要城市,城市主体坐落于卢瓦尔河下游北岸,距入海口(卢瓦尔河汇入比斯开湾)约50公里。南特是法兰西第6大城市,作为法国第