基尔霍夫积分定理

✍ dations ◷ 2025-10-14 20:38:18 #光学,衍射

基尔霍夫积分定理(Kirchhoff integral theorem)表明,假设点P在闭合曲面 S {\displaystyle \mathbb {S} } 之外,只考虑单色波,则位于点P的波扰 ψ ( r ) {\displaystyle \psi (\mathbf {r} )} ,可以以位于闭合曲面 S {\displaystyle \mathbb {S} } 的所有波扰与其梯度表达为

或者

其中, R = r r {\displaystyle \mathbf {R} =\mathbf {r} -\mathbf {r} '} 是从闭合曲面 S {\displaystyle \mathbb {S} } 的任意位置 r {\displaystyle \mathbf {r} '} 到点P位置 r {\displaystyle \mathbf {r} } 的位移矢量, R {\displaystyle R} 是其数值大小, k {\displaystyle k} 是波数, {\displaystyle \nabla '} 是对于源位置 r {\displaystyle \mathbf {r} '} 的梯度, d S {\displaystyle \mathrm {d} \mathbf {S} '} 是从闭合曲面 S {\displaystyle \mathbb {S} } 向内指入的微小面元素矢量, n {\displaystyle {\frac {\partial }{\partial n'}}} 是对于闭合曲面 S {\displaystyle \mathbb {S} } 的法向导数。

基尔霍夫积分定理是因德国物理学者古斯塔夫·基尔霍夫而命名。这定理广泛地应用于光学领域。对于很多案例,这定理的方程可以近似成一种更简单的形式,称为基尔霍夫衍射公式。惠更斯-菲涅耳原理的倾斜因子专门依方向的不同而调整由点波源所产生的次波朝着不同方向传播的波幅。从基尔霍夫衍射公式,可以推导出倾斜因子的确切形式。

根据格林第二恒等式,假若在体积 V {\displaystyle \mathbb {V} } 内,函数 ϕ {\displaystyle \phi } ψ {\displaystyle \psi } 都是二次连续可微,则

其中,闭合曲面 S {\displaystyle \mathbb {S} } 是体积 V {\displaystyle \mathbb {V} } 的表面, d S {\displaystyle \mathrm {d} \mathbf {S} } 是从闭合曲面 S {\displaystyle \mathbb {S} } 向外指出的微小面元素矢量。

这方程的左手边是积分于体积 V {\displaystyle \mathbb {V} } ,右手边是积分于这体积的闭合曲面 S {\displaystyle \mathbb {S} }

设定函数 ψ ( r ) {\displaystyle \psi (\mathbf {r} )} 满足单色波的亥姆霍兹波动方程:

设定 ϕ ( r , r ) {\displaystyle \phi (\mathbf {r} ,\mathbf {r} ')} 为一种格林函数,是可以描述传播于自由空间、满足数值在无穷远为零的边界条件的圆球面出射波:

其中, R = | r r | {\displaystyle R=|\mathbf {r} -\mathbf {r} '|}

这函数 ϕ ( r , r ) {\displaystyle \phi (\mathbf {r} ,\mathbf {r} ')} 满足关系式

其中, δ ( r r ) {\displaystyle \delta (\mathbf {r} -\mathbf {r} ')} 是三维狄拉克δ函数。

ϕ ( r , r ) {\displaystyle \phi (\mathbf {r} ,\mathbf {r} ')} ψ ( r ) {\displaystyle \psi (\mathbf {r} )} 的满足式代入,则格林第二恒等式变为

为了标记原因,对换无单撇号与有单撇号的变量。这样, r {\displaystyle \mathbf {r} } 标记检验位置, r {\displaystyle \mathbf {r} '} 标记源位置:

假若波扰 r {\displaystyle \mathbf {r} } 的位置在体积 V {\displaystyle \mathbb {V} } 内,即点P被包围在闭合曲面 S {\displaystyle \mathbb {S} } 内,则 ψ ( r ) {\displaystyle \psi (\mathbf {r} )} 写为

上述公式应用于点P被包围在闭合曲面内的物理案例,即从位于闭合曲面的次波源所发射出的次波,在闭合曲面内的点P所产生的波扰。大多数衍射案例计算,从延伸尺寸波源发射出的波,其波前所形成的闭合曲面,在闭合曲面的所有次波源,所发射出的次波,在闭合曲面外的点P所产生的波扰;对于这些案例,点P在闭合曲面之外,延伸波源在闭合曲面之内。这公式也可以推导为点P在闭合曲面外,波源在闭合曲面之内的物理案例。如右图所示,假设闭合曲面 S {\displaystyle \mathbb {S} } 是由闭合曲面 S 1 {\displaystyle \mathbb {S} _{1}} 与闭合曲面 S 2 {\displaystyle \mathbb {S} _{2}} 共同组成,曲面 S 1 {\displaystyle \mathbb {S} _{1}} 被包围在曲面 S 2 {\displaystyle \mathbb {S} _{2}} 的内部。点P处于曲面 S 2 {\displaystyle \mathbb {S} _{2}} 之内,曲面 S 1 {\displaystyle \mathbb {S} _{1}} 之外。

让曲面 S 2 {\displaystyle \mathbb {S} _{2}} 的半径趋于无穷大,则对于曲面 S 2 {\displaystyle \mathbb {S} _{2}} 的任意点Q, R r {\displaystyle R\to r'} R ^ r ^ {\displaystyle {\hat {\mathbf {R} }}\to -{\hat {\mathbf {r} '}}} ,被积函数趋向于零,快过 r {\displaystyle r'} 平方反比的趋向于零,满足“索莫菲辐射条件”(Sommerfeld radiation condition),因此在曲面 S 2 {\displaystyle \mathbb {S} _{2}} 的总贡献为零。所以,在点P的波扰为

注意到微小面元素矢量 d S {\displaystyle \mathrm {d} \mathbf {S} '} 的方向是从曲面 S 1 {\displaystyle \mathbb {S} _{1}} 向内指入。现在,将微小面元素矢量 d S {\displaystyle \mathrm {d} \mathbf {S} '} 的方向改为与原本方向相反: d S d S {\displaystyle \mathrm {d} \mathbf {S} '\to -\mathrm {d} \mathbf {S} '} ,即从闭合曲面 S 1 {\displaystyle \mathbb {S} _{1}} 向外指出,则可得到基尔霍夫积分定理的表达式:

假设 η ^ {\displaystyle {\hat {\boldsymbol {\eta }}}} 是与 d S {\displaystyle \mathrm {d} \mathbf {S} '} 同方向的单位矢量,是垂直于闭合曲面 S 1 {\displaystyle \mathbb {S} _{1}} 的法矢量。那么,法向导数与梯度的关系为

所以,基尔霍夫积分定理的另一种表达式为

总结,只考虑单色波,位于点P的波扰 ψ ( r ) {\displaystyle \psi (\mathbf {r} )} ,可以以位于闭合曲面 S 1 {\displaystyle \mathbb {S} _{1}} 的所有波扰 ψ ( r ) {\displaystyle \psi (\mathbf {r} ')} 与其梯度 ψ ( r ) {\displaystyle \nabla '\psi (\mathbf {r} ')} 来表达。

对于非单色波,必须使用更广义的形式。以傅里叶积分来表达非单色波的分解:

其中, ω = k c {\displaystyle \omega =kc} 是角速度, c {\displaystyle c} 是光速。

根据傅里叶反演公式(Fourier inversion formula):

对于每一个傅里叶分量 ψ ω {\displaystyle \psi _{\omega }} ,应用基尔霍夫积分定理,可以得到

将这公式代入 Ψ ( r , t ) {\displaystyle \Psi (\mathbf {r} ,t)} 的傅里叶积分公式:

设定 k = ω / c {\displaystyle k=\omega /c} ,注意到推迟时间 t r = t R / c {\displaystyle t_{r}=t-R/c} 出现在相位因子里,必须将光波传播的时间纳入计算。更换积分次序,公式变为

在时间 t {\displaystyle t} ,位于点P的波扰 Ψ ( r , t ) {\displaystyle \Psi (\mathbf {r} ,t)} ,可以以位于闭合曲面 S {\displaystyle \mathbb {S} } 的所有波扰在其推迟时间 t r {\displaystyle t_{r}} 的数值 Ψ ( r , t r ) {\displaystyle \Psi (\mathbf {r} ',t_{r})} 与其法向导数 Ψ ( r , t r ) / n {\displaystyle \partial \Psi (\mathbf {r} ',t_{r})/\partial n'} 来表达:

这就是推广后的基尔霍夫积分定理。

光波是传播于空间的电磁辐射,理当被视为一种电磁场矢量现象。但是,基尔霍夫的理论是标量理论,将光波当作标量处理,这可能会造成偏差。因此,物理学者做了很多实验来检查结果是否准确。他们发现,只要孔径尺寸比波长大很多、孔径与观察屏之间的距离不很近,则使用标量理论可以得到相当准确的答案。但是对于某些问题,例如高分辨率光栅衍射,标量理论就不适用,必须使用矢量理论。

相关

  • 爱利克·埃里克森爱利克·霍姆伯格·埃里克森(德语:Erik Homburger Erikson,1902年6月15日-1994年5月12日),又译为艾力克·汉博格·艾力逊,是一位德裔美籍发展心理学家与心理分析学者,以其心理社会发
  • 藜亚科详见内文藜亚科(学名:Chenopodioideae)是石竹目苋科的亚科,有大约100属、1400多种植物,单单在中国大陆就已有有39属170种,在华北和西北生长。藜科植物都是草本或灌木;很少是小乔木
  • 翅膀亦称翼,为鸟与昆虫等动物用来飞行的器官。在现代,许多机械物件也会使用翅膀飞翔,例如航天飞机及飞机等。鸟的翅膀是其飞翔的主要结构,翅膀外面覆盖硬羽,其特性适于飞行。翅膀
  • 韩国学韩国学(韩语:한국학)是指对于朝鲜半岛等各方面的研究,包括朝鲜历史、朝鲜文学、朝鲜艺术、朝鲜音乐和韩语等等,有时候也包括在东亚研究的一部分。在韩国,韩国学中央硏究院是研究韩
  • 陈桢陈桢(1894年3月14日-1957年11月15日),字席山,中年后改字协三,动物遗传学家,出生于江苏邗江,改籍江西铅山,1918年毕业于金陵大学,获得农学士学位,随后留校担任育种学助教,1919年考取清华
  • 音效音效(英语:audio effect)或声效(英语:sound effect)是人工制造或加强的声音,用来增强对电影、电子游戏、音乐或其他媒体的艺术或其他内容的声音处理。在电影和电视制作中,一个音效是
  • 普拉姆迪亚·阿南达·杜尔普拉姆迪亚·阿南达·杜尔(爪哇语:Pramoedya Ananta Toer;1925年2月6日-2006年4月30日),印尼著名作家,创作生涯横跨荷属东印度、二战被日本占领、独立后的苏卡诺与苏哈托时期。生于
  • 2011年碧特博格羽毛球黄金大奖赛2011年碧特博格羽毛球黄金大奖赛为第24届碧特博格羽毛球公开赛,是2011年世界羽联大奖赛的其中一站。本届赛事于2011年11月1日-11月6日在德国萨尔州的首府萨尔布吕肯举行,并获
  • 呼伦湖呼伦湖(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus Ti
  • 保罗·海泽保罗·约翰·路德维希·冯·海泽(德语:Paul Johann Ludwig von Heyse,1830年3月15日-1914年4月2日),德国小说家、诗人、剧作家,1910年诺贝尔文学奖获得者。海泽在德国柏林出生,父亲