二维空间

✍ dations ◷ 2025-11-22 14:26:25 #艺术理论,维度

二维空间或译二度空间(Second Dimension)是指仅由宽度→水平线和高度→垂直线(在几何学中为X轴和Y轴)两个要素所组成的平面空间,只在平面延伸扩展,同时也是美术上的一个术语,例如绘画便是要将三维空间的事物,用二维空间来展现。

线性代数中也有另一种探讨二维空间的的方式,其中彼此独立性的想法至关重要。平面有二个维度,因为长方形的长和宽的长度是彼此独立的。以线性代数的方式来说,平面是二维空间,因为平面上的任何一点都可以用二个独立向量(英语:Coordinate vector)的线性组合来表示。

二个向量A = 和B = 的数量积定义为:

向量可以画成一个箭头,量值为箭头的长度即其,向量的方向就是箭头指向的方向。向量A的长度为 A {\displaystyle \|\mathbf {A} \|} 。以此观点来看,两个欧几里得向量A和B 的数量积定义为

其中θ为A和B的角度

向量A和自己的数量积为

因此

这也是向量欧几里得距离的公式。

拓扑学的平面定义为是唯一可收缩(英语:contractible)的曲面。

若从平面中移除任何一个点,剩下的空间仍然是连通空间,但已不是单连通空间。

在图论中,平面图是指可以嵌入在平面中的图,也就是图可以画在平面上,图的各边只会在端点相交。换句话中,可以在平面上画出此图,图的各边不会互相交叉。这様的图称为平面图。

相关

  • 六氟化铀六氟化铀(英语:uranium hexafluoride)是一种铀的化合物,其化学式为UF6。六氟化铀被用于制取浓缩铀,因此在核工业中有很重要的价值。标准状况下,六氟化铀为灰色的晶体。六氟化铀有
  • 零声母零声母(zero consonant、silent initial、null-onset letter)是一个汉语语音学的名词,常用符号“Ø”表示。汉语由于一般为一个字代表一个音节,其中“前置辅音”称为声母,而元音
  • Kopitiam邻里咖啡店或传统咖啡店(马来语:Kopitiam)是一种结合传统早餐和咖啡店的东南亚流行饮食文化,Kopitiam一词是结合马来语中的咖啡(kopi)和福建话中的店(白话字:tiàm)而成的混合词。典
  • 曹元弼曹元弼(1867年-1953年),字谷孙、师郑、懿斋,号叔彦、新罗仙吏、复礼老人,斋名复礼堂。江苏吴县人,清朝政治人物、进士出身。光绪二十一年(1895年),登进士,同年五月,授内阁中书。后经张之
  • 韩国城韩国街(韩语:코리아타운)是指在朝鲜半岛之外,有大量韩侨集中生活的地区。
  • 物语物语是传统日本文学的一种体裁,原意为“谈话”,后引申为故事、传记、传奇等意思,是一种扩大化了的、具有散文性质的、用来叙述故事的文学体裁,可与史诗相比较。物语与日本口语传
  • 衡阳县第一中学坐标:26°59′59″N 112°21′21″E / 26.999796°N 112.355804°E / 26.999796; 112.355804衡阳县第一中学(英语:No.1 Middle School Hengyang County)位于湖南省衡阳市衡阳县,
  • 草莓冰淇淋草莓冰淇淋(英语:Strawberry ice cream)是通过新鲜的草莓与鸡蛋、鲜奶油、香荚兰和食糖混合制成的冰淇淋口味。大多数草莓冰淇淋是粉红色或红色,草莓冰淇淋至少可追溯到1813年詹
  • 占纳特占纳特是伊朗的城市,位于该国南部札格罗斯山脉东南部,由法尔斯省负责管辖,距离首府设拉子225公里,海拔高度1,136米,2006年人口10,817。
  • 大岛渚大岛渚(1932年3月31日-2013年1月15日),日本电影导演,作品以艺术另类、前卫新锐著称。与黑泽明、小津安二郎两导演齐名国际,屡获国际影展大奖。其妻为女演员小山明子。大岛于冈山县