素数阶乘素数(又称素数阶乘質数或質数阶乘素数)是和某个素数阶乘相邻的素数,即它是某个素数阶乘的增一或减一。
前几个素数阶乘素数是:
截至2010年 (2010-表达式错误:无法识别的标点“某”。),我们所知道的最大素数阶乘素数是843301# - 1,它有365,851位数,由PrimeGrid发现.
素数阶乘素数也能用来证明素数是无限的。首先,假设前n个素数是唯一存在的素数。如果# + 1或# − 1是素数阶乘素数,这意味着有比第n个素数更大的素数(即使不是素数,也能证明素数无穷,但不那么直接。这两个数除以前n个中的任何一个素数 时,都有余数 1 或 −1 ,因此不整除其中任何一数)。
事实上,欧几里得的证明并没有假设一个有限集合包含所有素数的存在。相反,他说:
consider any finite set of primes (not necessarily the first n primes; e.g. it could have been the set {3, 11, 47}), and then went on from there to the conclusion that at least one prime exists that is not in that set.
意思是:考虑任何素数的有限集合(不一定是一开始的素数,例如,它可以是集合{3,11,47}),然后从两个方面得到这样的结论:至少存在一个不在该集合的素数。