通约性

✍ dations ◷ 2025-10-22 16:51:30 #有理数,振动和波,天体力学

假若,两个不等于零的实数 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 的除商 a b {\displaystyle {\frac {a}{b}}\,\!} 是一个有理数,或者说, a {\displaystyle a} b {\displaystyle b} 的比例相等于两个非零整数 p {\displaystyle p} q {\displaystyle q} 的比例:

则称它们是互相可通约的(commensurable),而这特性则称为通约性。这意味着,存在一个非零的实数公测数 (common measure) m   ( m R ) {\displaystyle m\ (m\in R)} ,使得

所以

或是

其中 p q Q {\displaystyle {\frac {p}{q}}\in Q} ,所以 a b Q {\displaystyle {\frac {a}{b}}\in Q}

反之,如果该二数的除商是一个无理数,则称它们是不可通约的(incommensurable),亦即, a {\displaystyle a} b {\displaystyle b} 之间不存在一个公测数 m   ( m R , m 0 ) {\displaystyle m\ (m\in R,m\neq 0)} 使得

毕达哥拉斯学派发现了不可通约数(无理数) 2 {\displaystyle {\sqrt{2}}} ,这破坏了他们的比例论。

为了挽救比例论,尤得塞斯提出了以几何量为基础的比例论,被欧几里得收录在《几何原本》的第五册中。这本书里面记载着,假若, n a {\displaystyle n_{a}\,\!} 个线段 c {\displaystyle c\,\!} 连接起来,成为一个线段,全等于线段 a {\displaystyle a\,\!} n b {\displaystyle n_{b}\,\!} 个线段 c {\displaystyle c\,\!} 连接起来,成为一个线段,全等于线段 b {\displaystyle b\,\!} ;这里, n a {\displaystyle n_{a}\,\!} n b {\displaystyle n_{b}\,\!} 是整数。那么,两个线段 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 是互相可通约的。欧几里得并没有用到实数的概念。他用到了线段与线段之间,全等,比较长,或比较短,这些概念。

设定实数 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 。那么,实数 c {\displaystyle c\,\!} ,整数 n a {\displaystyle n_{a}\,\!} n b {\displaystyle n_{b}\,\!} 的存在,促使

的充分必要条件是除商 a b {\displaystyle {\frac {a}{b}}\,\!} 为有理数。

假设 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 是正值的实数。又假设我们有一支尺,长度单位为实数 c {\displaystyle c\,\!} 。我们用这尺来测量两个长度为 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 的线段。假若,所得到的答案都是整数,则称 a {\displaystyle a\,\!} b {\displaystyle b\,\!} 互相可通约的;否则,互相不可通约的。

在天文学里,两个公转于运行轨道的天体,像行星、卫星、或小行星,假若,它们的公转周期的比例是有理数,则称它们相互呈现通约性。

例如,海王星与冥王星的轨道周期的比例是 2:3 。土星的两个卫星,土卫六与土卫七的轨道周期的比例是 3:4 。特洛伊小行星与木星的轨道周期的比例是 1:1 。格利泽 876b 与格利泽 876c ,这两个太阳系外行星的轨道周期的比例是 2:1 。

科学家认为天体的通约性应该是因为轨道共振而产生的。

在一个周期性物理系统里,每一个广义坐标都有它运动的周期。假若,其中有任何广义坐标的周期与别的广义坐标的周期不相同,则称此物理系统为多重周期性物理系统。假若,两个广义坐标的周期的比例是个有理数,则称这两个周期是互相可通约的。假若,每一个广义坐标的周期与其它的广义坐标的周期都是互相可通约的,则此系统是完全可通约的,称此系统为完全可通约系统。

相关

  • 妊娠最后三个月妊娠(英语:pregnancy),又称怀孕,是指胚胎或胎儿(英语:Offspring)在哺乳类雌性体内孕育成长的过程,而在哺乳动物中研究得最详细的是人类的妊娠。人类的妊娠约40周,从受精排卵算起则为38
  • 墨尔本公园坐标:37°49′22″S 144°58′48″E / 37.82267°S 144.98005°E / -37.82267; 144.98005墨尔本公园(Melbourne Park)位于澳洲维多利亚州墨尔本的墨尔本运动和娱乐区(Melbourne
  • 彭宁离子阱彭宁离子阱是一个可以储存带电粒子的装置,它使用均匀轴向磁场和不均匀四极电场束缚离子。特别适合于精确测量离子和稳定的亚原子粒子的特性。为了测量电子磁矩,人们利用这种装
  • 鄂罗克人鄂罗克人 (俄语:Ороки;日语:ウィルタ/オロッコ,自称:ульта,ulta,ulcha)是居住在库页岛东边的一个小族群,今属俄罗斯联邦萨哈林州管辖,语言属于阿尔泰语系通古斯语族,无文字。
  • 德克萨斯诉怀特案德克萨斯州诉怀特案(74 U.S. 700 (1869)),是1869年在美国联邦最高法院进行诉讼的一个重要案例。在该案中,德克萨斯州的内战后重建政府声称德克萨斯州的邦联政府在内战期间非法
  • 雄核发育雄核发育(androgenesis)又称生殖寄生(sexual parasitism),是一种发育方式,在这种发育方式中,与精子结合的卵子失去遗传活性,胚胎的发育仅受父本遗传控制。目前还未有自然雄核发育的
  • 特塞拉裂谷特塞拉裂谷是一个地质裂谷,位于大西洋亚速尔群岛以东,西起亚速尔三叉接合部位,东南至亚速尔-直布罗陀转换断层,是欧亚板块与非洲板块的分隔边界。以特塞拉岛而得名。
  • 剑桥 (肯塔基州)剑桥(英语:Cambridge),是美国肯塔基州的一座城市。面积约为0.3平方公里(0.1平方英里)。根据2010年美国人口普查,该市的人口为175人。
  • 笕十藏笕十藏,又名笕政右卫门、金六郎、挂飞十藏,真田十勇士之一。擅使种子岛火绳枪,是当时日本战国的枪炮名家之一。据说是幸村小姓(侍从)笕十兵卫之子,遵守父亲之言为真田家尽忠。也有
  • 德布罗意方程组德布罗意方程组是描述物质波的方程组。德布罗意方程组描述了波长 λ {\displaystyle \lambda } 与动量 p