向心力

✍ dations ◷ 2025-11-30 09:37:52 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • 咯萘啶咯萘啶是一种抗疟疾药物。它于1970年首次制造,自20世纪80年代以来一直在中国临床使用。咯萘啶是苯并萘啶的衍生物,为中国研制的一种抗疟药。对红内期疟原虫有杀灭作用,对耐氯喹
  • 无神论者的赌注对宗教的批评 · 自由思想反教权主义 · 反宗教虚构宗教无神论者的赌注,因迈克尔·马丁(英语:Michael Martin (philosopher))发表在他1990年出版的书《无神论:哲学的正信》中而
  • 罗曼语国家罗马语族(又称罗曼语族、拉丁语族),属于印欧语系,是从意大利语族衍生出来的现代语族,主要包括从拉丁语演化而来的现代诸语言。操罗马语族语言的人主要包括传统意义上的“欧洲拉丁
  • 保护状况物种的保护状况(英语:conservation status)是指物种继续生存的可能性。很多因素都可能影响物种的保护状况:不仅仅是简单的生存数量,而是整个种群随时间的增长或减少,喂养成功率,已
  • 毫米汞柱毫米汞柱(英语:Millimeter of mercury),符号为mmHg,是一种压力单位,等于一毫米高的水银柱对液柱底面产生的压力。一毫米汞柱为133.322387415帕斯卡,约为1托。。
  • 埋藏学埋藏学(英语:Taphonomy )又叫化石形成学,是研究生物如何石化的一门学科。研究生物体从生物圈变为岩石圈的过程。相关学科有古生物学、地质学。
  • 弗兰克·博尔曼弗兰克·弗雷德里克·博尔曼二世(Frank Frederick Borman II,1928年3月14日-)前美国空军少校及美国国家航空航天局宇航员,以执行首次环绕月球的阿波罗8号任务而闻名。博尔曼出生
  • 约翰·福斯特·杜勒斯约翰·福斯特·杜勒斯(John Foster Dulles,1888年2月25日-1959年5月24日),美国共和党籍政治人物,第52任美国国务卿(1953年-1959年)。是冷战早期重要人物,主张强硬态度对抗苏联。早年曾
  • 冗余首字母缩写症候群症候群冗余首字母缩写综合征综合征(英语:RAS syndrome)或RAS综合征(日语:RAS症候群),或冗余缩写短语(英语:RAP phrases),是指多个词语的首字母合成一个短语,但是某个词或某几个词被重复的现象
  • 地的含义有: