首页 >
向心力
✍ dations ◷ 2025-06-07 12:16:45 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将
ω
=
v
r
{displaystyle omega ={frac {v}{r}}}
代入
F
=
m
ω
2
r
{displaystyle F=momega ^{2}r}
,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设
R
{displaystyle mathbf {R} }
=
r
+
d
{displaystyle {boldsymbol {r+d}}}
(半径加上物体瞬间之掉落距离)
所以
d
{displaystyle mathbf {d} }
=
R
−
r
{displaystyle {boldsymbol {R-r}}}
由于
d
{displaystyle mathbf {d} }
=
1
2
a
Δ
t
2
{displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}}
;
则
a
{displaystyle mathbf {a} }
=
(
2
d
Δ
t
2
)
{displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道
R
2
=
r
2
+
D
2
{displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}}
,
且
d
=
r
2
+
D
2
−
r
{displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定
D
{displaystyle mathbf {D} }
=
v
Δ
t
{displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a
=
lim
Δ
t
→
0
2
d
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知
d
{displaystyle {boldsymbol {d}}}
代入,
a
=
lim
Δ
t
→
0
2
(
r
2
+
D
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把
D
=
v
Δ
t
{displaystyle {boldsymbol {D=vDelta t}}}
代入,a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
Δ
t
)
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘
(
r
2
+
v
2
Δ
t
2
+
r
)
{displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)}
用以去根号,
a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
−
r
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
r
2
{displaystyle {boldsymbol {r^{2}}}}
和
r
2
{displaystyle {boldsymbol {r^{2}}}}
相抵销,
a
=
lim
Δ
t
→
0
2
(
v
2
)
(
Δ
t
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
t
2
{displaystyle {boldsymbol {t^{2}}}}
和
t
2
{displaystyle {boldsymbol {t^{2}}}}
上下相抵销为
1
{displaystyle {boldsymbol {1}}}
,
a
=
lim
Δ
t
→
0
2
(
v
2
)
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a
=
2
(
v
2
)
r
2
+
r
{displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a
=
2
(
v
2
)
2
r
{displaystyle a={frac {2(v^{2})}{2r}}}因此
a
=
v
2
r
{displaystyle a={frac {v^{2}}{r}}}
相关
- 条目肺炎(pneumonia),是指肺部出现发炎的症状,主要是肺泡受到影响。肺炎常见的症状包括有痰的咳嗽、胸痛、发热及呼吸困难。症状可能由轻微到严重不一。特别高龄的长者或新生儿可能
- 横膈膜在哺乳动物的解剖学中,横膈膜(英语:Thoracic diaphragm)是一层骨骼肌薄膜,延展及肋骨底部。横膈膜将胸腔与腹腔相分隔,并对呼吸执行重要功能。解剖学中的膈膜(英语:Diaphragm)也可以
- 贵族贵族(拉丁语:Patricius、意大利语:Patrizio)是指古罗马帝国享有一些特权的古罗马公民。他们属于特权阶级,地位高于平民,是古罗马社会中最富有的成员。在前400年前,他们曾垄断全部官
- 驴驴(学名:Equus africanus asinus)是常见的马科马属家畜,是非洲野驴被人类驯化所形成的亚种,和马体形相似,但耳朵长,尾巴有尾柄,类似牛尾巴。驴是奇蹄目的成员。其他成员包括斑马和马
- RhOsub2/sub二氧化铑是一种无机化合物,化学式为RhO2。二氧化铑属于四方晶系,有着金红石结构。二氧化铑难溶于王水。Rh2Cl2(C8H12)2 · Rh6(CO)16 · C8H12O8Rh2 · RhF3 · RhCl3 ·
- 欧洲室尘螨尘螨(学名:Dermatophagoides spp.)是一种8只脚的微小的蛛形纲节肢动物,长170-500微米,宽250-322微米,雌雄个体均为乳白色,肉眼是几乎看不到的,最喜欢生长在温暖潮湿的环境中,适合生长的
- 1933年授权法《授权法》(德语:Ermächtigungsgesetz),正式名称是《解救人民与帝国苦难法》(Gesetz zur Behebung der Not von Volk und Reich),在1933年3月23日由德国帝国议会(英语:Reichstag (We
- 运动片运动片是以运动作为主题的电影类型,此类电影可以是关于某一项运动、体育赛事、运动员的生平事迹,或其追随者的故事。
- 1970年 都灵1970年夏季世界大学生运动会是第六届夏季世界大学生运动会,于1970年8月26日至9月6日在意大利都灵举行,这是该地时隔11年再次举行该赛事。葡萄牙里斯本原本获得1969年赛事主办
- 财团法人财团法人(foundation)是一具有法人资格的“财产的集合体”,由捐助人捐助一定数额的财产,并经一定法定程序而成立之法人团体。中华民国依据2018年立法院通过《财团法人法》,视创立