向心力

✍ dations ◷ 2025-11-23 10:13:03 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • 液体液体(英语:Liquid)是物质的四个基本状态之一(其它状态有固体、气体、等离子体),没有确定的形状,但有一定体积,具有移动与转动等运动性。液体是由经分子间作用力结合在一起的微小振动
  • 谬论谬误与谬论是不恰当的推理,一般而言谬误指不当的推理思路,而谬论指不当的推理言论,可能是说者有不当思路,或说者无不当思路,但意图使听者产生不当思路或其言论明显容易误导听者产
  • 暴风雪航天飞机计划暴风雪航天飞机计划(俄语:Бура́н,罗马转写:Buran)是一个存在于前苏联时代的可重复使用航天器计划。计划始于1976年,由当时苏联的中央空气动力学研究所(ЦАГИ;TsAGI)负责,以回
  • 法兰西斯·柯林斯弗朗西斯·柯林斯(英语:Francis S. Collins,1950年4月14日-),美国遗传学家,美国国立卫生研究院院长,领导人类基因组计划,并发现了多种疾病基因。1989年与徐立之共同同发现囊性纤维化
  • 北部-加来海峡坐标:50°28′N 2°43′E / 50.467°N 2.717°E / 50.467; 2.717北部-加来海峡(法语:Nord-Pas-de-Calais)是法国北部的一个旧大区,北与比利时接壤。面积12,413km²。下辖诺尔省(59
  • 征服英格兰诺曼征服可以指:
  • 安博因姆安博因港是西非国家安哥拉的城市,由南广萨省负责管辖,是位于该国西部大西洋沿岸的港口,建城于1923年,面积4,638平方公里,市内有机场设施,人口约66,000。
  • 海禁海禁(又称洋禁),是一种锁国政策,旨在禁止民间私自出海,有谓“尺板不得出海”,也限制外国商人前往本国通商。具体实施随着时间变迁而有张有弛,即“严禁”及“弛禁”之分。海禁目的是
  • 约翰·弗朗茨·恩克约翰·弗朗茨·恩克(德语:Johann Franz Encke,1791年9月23日-1865年8月26日),德国天文学家,出生在汉堡,数学家高斯的学生之一,曾经计算过彗星的周期,这颗彗星后来被命名为恩克彗星,也是
  • 链反应链反应(Chain reaction)又称连锁反应,是指反应的产物或副产物又可作为其他反应的原料,从而使反应反复发生。在化学中,链反应通常指光、热、辐射或引发剂作用下,反应中交替产生活性