首页 >
向心力
✍ dations ◷ 2025-04-04 21:12:27 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将
ω
=
v
r
{displaystyle omega ={frac {v}{r}}}
代入
F
=
m
ω
2
r
{displaystyle F=momega ^{2}r}
,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设
R
{displaystyle mathbf {R} }
=
r
+
d
{displaystyle {boldsymbol {r+d}}}
(半径加上物体瞬间之掉落距离)
所以
d
{displaystyle mathbf {d} }
=
R
−
r
{displaystyle {boldsymbol {R-r}}}
由于
d
{displaystyle mathbf {d} }
=
1
2
a
Δ
t
2
{displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}}
;
则
a
{displaystyle mathbf {a} }
=
(
2
d
Δ
t
2
)
{displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道
R
2
=
r
2
+
D
2
{displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}}
,
且
d
=
r
2
+
D
2
−
r
{displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定
D
{displaystyle mathbf {D} }
=
v
Δ
t
{displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a
=
lim
Δ
t
→
0
2
d
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知
d
{displaystyle {boldsymbol {d}}}
代入,
a
=
lim
Δ
t
→
0
2
(
r
2
+
D
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把
D
=
v
Δ
t
{displaystyle {boldsymbol {D=vDelta t}}}
代入,a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
Δ
t
)
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘
(
r
2
+
v
2
Δ
t
2
+
r
)
{displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)}
用以去根号,
a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
−
r
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
r
2
{displaystyle {boldsymbol {r^{2}}}}
和
r
2
{displaystyle {boldsymbol {r^{2}}}}
相抵销,
a
=
lim
Δ
t
→
0
2
(
v
2
)
(
Δ
t
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
t
2
{displaystyle {boldsymbol {t^{2}}}}
和
t
2
{displaystyle {boldsymbol {t^{2}}}}
上下相抵销为
1
{displaystyle {boldsymbol {1}}}
,
a
=
lim
Δ
t
→
0
2
(
v
2
)
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a
=
2
(
v
2
)
r
2
+
r
{displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a
=
2
(
v
2
)
2
r
{displaystyle a={frac {2(v^{2})}{2r}}}因此
a
=
v
2
r
{displaystyle a={frac {v^{2}}{r}}}
相关
- 人类菌群人类微生物群系(Human microbiome)又称为正常菌群(Normal Flora)是某些微生物与宿主在长期的进化过程中形成共生关系,对生物体无害的一类细菌。它们包括细菌,真菌,古菌,和病毒。虽然
- 蒙特塞拉特加勒比地区(浅黄色)蒙特塞拉特(英语:Montserrat)是英国海外领土,为西印度群岛中背风群岛南部的火山岛,由克里斯托弗·哥伦布在1493年以西班牙境内的蒙塞拉特山命名。该岛长18公里,宽
- 高脯氨酸血症高脯氨酸血症是一种遗传病,其会导致血浆脯氨酸水平升高。同时尿脯氨酸、羟脯氨酸、甘氨酸亦会增加其排泄量。此遗传病若与伴侣各携带同一缺陷基因,下一代罹病的几率不分性别皆
- 隶定陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 医用大麻医用大麻(法语:Cannabis médical; 英语:medical cannabis或medical marijuana)是可用于医疗处方的大麻或大麻素。相比娱乐用大麻的高强度THC,医用大麻拥有相对较高的大麻二酚(CBD)
- 张天霖张天霖(1978年10月31日-)台湾男演员,毕业于漳和国中、台北市立建国中学补校、真理大学运动管理学系。主要演艺工作以电视剧为主,另有广告代言与 MV 演出,也有跨行书籍著作及电影导
- 希波克拉底宣言希波克拉底誓词(希腊语:Όρκος του Ιπποκράτη,英语:Hippocratic Oath),俗称医师誓词,是西方医生传统上行医前的誓言,希波克拉底乃古希腊医者,被誉为西方“医学之父”
- 类癌类癌(Carcinoid)为一种成长缓慢的神经内分泌肿瘤,源自于神经内分泌细胞(英语:neuroendocrine system)。某些案例则会发生远端转移的状况。中肠(空肠、回肠、阑尾,以及盲肠)发生的类癌
- 马余刚马余刚(1968年3月-),生于浙江余姚,籍贯浙江宁海,中国核物理科学家。1968年3月生于浙江余姚,籍贯为宁海。1989年,于原杭州大学(后并入现浙江大学)物理系毕业。2015年,获国际华人物理与天
- 再引入再引入,或称为野化放归,野放(Reintroduction),是一种经过仔细考虑后将物种重新放归大自然的一种做法。一般可从圈养、或其他地区的亚种中挑选合适的个体进行野放。这做法除了适合