向心力

✍ dations ◷ 2025-02-22 18:30:16 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • 急性冠状动脉综合症急性冠状动脉综合征(英语:ACS, Acute coronary syndrome)是指由冠状动脉阻塞所引起的任何类型的症状。最常见的症状是胸部有挤压般的疼痛,常放射至左臂或下颌角点(gonion),并伴有
  • 洋菜琼脂,亦称寒天、琼脂胶、海菜胶、海燕窝、藻胶、石花菜、牛毛菜、大菜、菜燕等,是从海藻植物中提取的胶质。由日本美浓屋的太郎左卫门在17世纪60年代首次提取。可作为鱼胶的代
  • 新英格兰医学杂志《新英格兰医学杂志》(英语:The New England Journal of Medicine;简称 NEJM)是由美国麻省医学协会(英语:Massachusetts Medical Society)所出版的同行评审性质之医学期刊。它也是
  • 以利亚以利亚(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey A
  • 片假名(日语:片仮名/かたかな/カタカナ katakana *),是日语中表音符号(音节文字)的一种。与平假名、万叶假名等合称作假名。“片假名”一词在使用时常用“カタカナ”表示。签名时
  • 米兰理工大学米兰理工大学(Politecnico di Milano)是位于意大利米兰的一所国立大学,目前拥有七个校区。创立于1863年,是米兰历史最悠久的大学,也是意大利规模最大的科技类大学,约有42000个学生
  • 国家地理(2013年12月)《国家地理》(英语:National Geographic),原名《国家地理杂志》(National Geographic Magazine),是美国国家地理学会的官方杂志,在国家地理学会1888年成立后的9个月开始
  • 圣雅各之路圣雅各之路或圣地亚哥朝圣之路(西班牙语:El Camino de Santiago)是前往天主教的圣地之一的西班牙北部城市圣地亚哥-德孔波斯特拉的朝圣之路。主要指从法国各地经由比利牛斯山通
  • 固有免疫先天免疫系统(英语:Innate immunity)又称为非特异性免疫、固有免疫、非专一性防御,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异
  • 希罗数学上,希罗平均数是指两个非负的实数的一种平均,它的公式为希罗平均数也可以看成算术平均数与几何平均数的加权平均数。它以希罗命名,用以计算棱台或圆台的体积,此体积等于棱台