首页 >
向心力
✍ dations ◷ 2025-06-28 07:35:47 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将
ω
=
v
r
{displaystyle omega ={frac {v}{r}}}
代入
F
=
m
ω
2
r
{displaystyle F=momega ^{2}r}
,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设
R
{displaystyle mathbf {R} }
=
r
+
d
{displaystyle {boldsymbol {r+d}}}
(半径加上物体瞬间之掉落距离)
所以
d
{displaystyle mathbf {d} }
=
R
−
r
{displaystyle {boldsymbol {R-r}}}
由于
d
{displaystyle mathbf {d} }
=
1
2
a
Δ
t
2
{displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}}
;
则
a
{displaystyle mathbf {a} }
=
(
2
d
Δ
t
2
)
{displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道
R
2
=
r
2
+
D
2
{displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}}
,
且
d
=
r
2
+
D
2
−
r
{displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定
D
{displaystyle mathbf {D} }
=
v
Δ
t
{displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a
=
lim
Δ
t
→
0
2
d
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知
d
{displaystyle {boldsymbol {d}}}
代入,
a
=
lim
Δ
t
→
0
2
(
r
2
+
D
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把
D
=
v
Δ
t
{displaystyle {boldsymbol {D=vDelta t}}}
代入,a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
Δ
t
)
2
−
r
)
Δ
t
2
{displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘
(
r
2
+
v
2
Δ
t
2
+
r
)
{displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)}
用以去根号,
a
=
lim
Δ
t
→
0
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
−
r
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
r
2
{displaystyle {boldsymbol {r^{2}}}}
和
r
2
{displaystyle {boldsymbol {r^{2}}}}
相抵销,
a
=
lim
Δ
t
→
0
2
(
v
2
)
(
Δ
t
2
)
Δ
t
2
(
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
)
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时
t
2
{displaystyle {boldsymbol {t^{2}}}}
和
t
2
{displaystyle {boldsymbol {t^{2}}}}
上下相抵销为
1
{displaystyle {boldsymbol {1}}}
,
a
=
lim
Δ
t
→
0
2
(
v
2
)
r
2
+
(
v
2
)
(
Δ
t
2
)
+
r
{displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a
=
2
(
v
2
)
r
2
+
r
{displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a
=
2
(
v
2
)
2
r
{displaystyle a={frac {2(v^{2})}{2r}}}因此
a
=
v
2
r
{displaystyle a={frac {v^{2}}{r}}}
相关
- 生物医学工程人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学生物医学工程(Biomedical engineering)
- B02A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码B02(抗出血药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborat
- 轻泻药泻药指促进粪便排出的药物,一般用来治疗便秘。另外灌肠作为一种机械治疗便秘的方法,有时也归入泻药类。
- 鑭5d1 6s22, 8, 18, 18, 9, 2蒸气压第一:538.1 kJ·mol−1 第二:1067 kJ·mol−1 第三:1850.3 kJ·mol主条目:镧的同位素镧,是一种化学元素,元素符号为La,原子序数为57。是一种柔
- 科赫尔埃米尔·特奥多尔·科赫尔 (Emil Theodor Kocher,1841年8月25日-1917年7月27日)出生于伯恩,是一位瑞士科学家。曾在苏黎世、柏林、伦敦与维也纳接受教育或进行研究,在1865年得到博
- 气化可持续发展主题可再生能源主题环境主题气化反应(Gasification)是转换有机的或化石燃料的碳质物料为一氧化碳,氢气和二氧化碳的方法。这是通过在高温下(>700℃)时,物料不燃烧,并与受
- 实用新型实用新型是一种保护发明的知识产权权利。这种权利在一部分国家通过立法存在,例如阿根廷、奥地利、巴西、智利、中国、丹麦、芬兰、法国、德国、匈牙利、意大利、日本、马来西
- 诺华公司诺华(Novartis)是一家总部位于瑞士巴塞尔的制药及生物技术跨国公司。它的核心业务为各种专利药、消费者保健、非专利药、眼睛护理和动物保健等领域。诺华公司成立于1996年,由位
- 微型游戏机微型游戏机是电子游戏机的一类。许多被称为微型游戏机设备使用专门设计的廉价安卓系统,这些系统为连接电视机以及从Google Play等应用商店下载电子游戏而设计。2010年,云游戏
- 民雄乡#历史民雄乡(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Bîn-