向心力

✍ dations ◷ 2025-08-14 14:18:36 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • OSMn/an/an/an/an/an/an/an/an/an/a抑癌蛋白M(英语:Oncostatin M,缩写OSM,也译作制癌蛋白M、抑瘤素M)是由人类基因 OSM 编码的蛋白质,由209个氨基酸残基组成。OSM是一种多效的细胞因
  • 玫瑰糠疹玫瑰糠疹(Pityriasis rosea)是一种皮疹。它是良性的,但在某些情况下可能会造成很大的不适。 典型的玫瑰糠疹,开始出现单一的母斑样的皮肤损害,然后在一周或两周内,出现全身广泛的
  • 子宫切除术子宫切除术(hysterectomy)指的通常是由妇产科医生进行的切除子宫的手术。它可分为整个(包括整个子宫和子宫颈)或部分切除。在普遍的情况下,切除卵巢需要与切除子宫手术同时进行。
  • ΨPsi(大写Ψ,小写ψ,发音:/ˈpsaɪ/或/ˈsaɪ/,中文音译:普西),是第二十三个希腊字母。西里尔字母的Ѱ (Psi)是由Psi演变而成。符号Ψ或ψ用于:
  • 圆形广场广场(英语:plaza/square)是在传统城市中的一个广阔、平坦的开放空间,主要用途是让民众聚集,或用作政治用途。在广场中通常会设有一些铜像、雕塑、纪念碑或喷泉等装饰。广场一般指
  • 俄国临时政府俄国临时政府(俄语:Вре́менное прави́тельство России;1917年3月15日─11月7日)是俄国罗曼诺夫王朝被推翻后,建立的名为俄罗斯共和国在彼德格勒成
  • 库兹涅佐夫号航空母舰库兹涅佐夫号航空母舰是俄罗斯现役最新型的航空母舰,在苏联时期建造,苏俄计划号码为1143.5号计划重型航空巡洋舰,于1983年开工建造。该舰建造时期原名苏联号、克里姆林宫号、布
  • 1931年威斯敏斯特法令威斯敏斯特法令是英国国会在1931年通过的法案,赋英国各自治领更大自治权。此法案中订明:一旦接受威斯敏斯特法令,自治领实际上相当于独立国家,能够自行外交、国防权利。但当时的
  • 氢化氢化也称为加氢,是一种用氢气和其他化合物反应的单元操作,通常发生在镍、钯、铂等催化剂表面。氢化通常用于还原未饱和的有机化合物或其他化合物。碳氢化合物的氢化可以还原掉
  • 雪峰山脉雪峰山脉主体位于湖南中部和西部,是湖南境内重要的山脉,为资江与沅水的分水岭。主峰苏宝顶海拔1934米。崀山风景区为最新开发的旅游景点,为第四批国家重点风景名胜区。抗日战争