向心力

✍ dations ◷ 2025-11-03 11:44:39 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • 乳房摄影术乳房摄影术(英语:Mammography)是利用低剂量(约为 0.7毫西弗)的X光检查人类(主要是女性)的乳房,它能侦测各种乳房肿瘤、囊肿等病灶,有助于早期发现乳癌,并降低其死亡率。除了影像检查之
  • 烤炙烤是一种用火或者是热源将食物加热的烹调方式。通常是先将肉或蔬菜等食材放置于铁丝网上,或者将食材用锡箔纸包好后,放进烤箱中进行加热,或者是用烧红的木炭进行加热。这种烹饪
  • 美国宪法宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
  • 注册球员足球员,在英语中也称footballer或soccer player是一个运动员,包含各种不同的足球。主要形式有足球、美式足球、加拿大式足球、澳式足球、盖尔式足球、联盟式橄榄球和橄榄球。
  • 鹿类鹿科,是偶蹄目反刍亚目下的一科,目前全世界约有34种。其中包括白尾鹿、骡鹿、加拿大马鹿、驼鹿、红鹿、驯鹿、黇鹿、西方狍等。所有的公鹿(除了獐外)及母驯鹿头上长有角并每年更
  • 图特摩斯二世图特摩斯二世 (英语文献中一般写作:Thutmose II,?—约公元前1479年)古埃及第十八王朝法老(约公元前1492年—约公元前1479年在位)。图特摩斯二世是法老图特摩斯一世与其庶妻姆特诺弗
  • 朗格克里斯蒂安·劳斯·朗格(挪威语:Christian Lous Lange,1869年9月17日-1938年12月11日),挪威人。1909年开始担任国际议会联盟秘书长,直到1913年退休。1921年他获得诺贝尔和平奖。
  • 疾病发现年表这是一张按照发现时代排列的疾病年表。
  • 亚丁population_blank2 人亚丁(عدن),也门共和国的临时首都、经济中心,亚丁省省会,重要国际港口,也是前也门民主人民共和国(南也门)的首都。爆发2014-15年也门政变与也
  • 小学校小学校,即日语“小学”之意,为台湾日治时期自1898年起,以中央或地方经费所开设的儿童义务教育学校学制之一。除了小学校之外,台湾总督府依照当时社会情况,还设有公学校、蕃人公学