向心力

✍ dations ◷ 2025-07-04 10:23:10 #向心力
向心力是当物体沿着圆周或者曲线轨道运动时,指向圆心(曲率中心)的合外力作用力。“向心力”一词是从这种合外力作用所产生的效果而命名的。这种效果可以由弹力、重力、摩擦力等任何一力而产生,也可以由几个力的合力或其分力提供。因为圆周运动属于曲线运动,在做圆周运动中的物体也同时会受到与其速度方向不同的合外力作用。对于在做圆周运动的物体,向心力是一种拉力,其方向随着物体在圆周轨道上的运动而不停改变。此拉力沿着圆周半径指向圆周的中心,所以得名“向心力”。向心力指向圆周中心,且被向心力所控制的物体是沿着切线的方向运动,所以向心力必与受控物体的运动方向垂直,仅产生速度法线方向上的加速度。因此向心力只改变所控物体的运动方向,而不改变运动的速率,即使在非匀速圆周运动中也是如此。非匀速圆周运动中,改变运动速率的切向加速度并非由向心力产生。向心力的大小与物体的质量(m)、物体运动圆周半径的长度(r)和角速度(ω)有着密切关系。1. 一物体要做匀速圆周运动所需要的向心力大小为:2. 欲知向心力与线速度大小的关系,可以将 ω = v r {displaystyle omega ={frac {v}{r}}} 代入 F = m ω 2 r {displaystyle F=momega ^{2}r} ,也就是物体的线速度与其角速度的关系:3. 因此由上方的公式表述,从牛顿定律的带入可得知,设 R {displaystyle mathbf {R} } = r + d {displaystyle {boldsymbol {r+d}}} (半径加上物体瞬间之掉落距离) 所以 d {displaystyle mathbf {d} } = R − r {displaystyle {boldsymbol {R-r}}} 由于 d {displaystyle mathbf {d} } = 1 2 a Δ t 2 {displaystyle {frac {1}{2}}{boldsymbol {aDelta t^{2}}}} ; 则 a {displaystyle mathbf {a} } = ( 2 d Δ t 2 ) {displaystyle left({frac {2d}{Delta t^{2}}}right)}从毕氏定理知道 R 2 = r 2 + D 2 {displaystyle {boldsymbol {R^{2}=r^{2}+D^{2}}}} , 且 d = r 2 + D 2 − r {displaystyle mathbf {d} ={sqrt {r^{2}+D^{2}}}-r}且定 D {displaystyle mathbf {D} } = v Δ t {displaystyle mathbf {vDelta t} }而在瞬间的情况之下之向心加速度:a = lim Δ t → 0 2 d Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2d}{Delta t^{2}}}}把已知 d {displaystyle {boldsymbol {d}}} 代入, a = lim Δ t → 0 2 ( r 2 + D 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+D^{2}}}-r)}{Delta t^{2}}}}再把 D = v Δ t {displaystyle {boldsymbol {D=vDelta t}}} 代入,a = lim Δ t → 0 2 ( r 2 + ( v Δ t ) 2 − r ) Δ t 2 {displaystyle a=lim _{Delta tto 0}{frac {2({sqrt {r^{2}+(vDelta t)^{2}}}-r)}{Delta t^{2}}}}分子、分母同乘 ( r 2 + v 2 Δ t 2 + r ) {displaystyle ({sqrt {r^{2}+v^{2}Delta t^{2}}}+r)} 用以去根号, a = lim Δ t → 0 2 ( r 2 + ( v 2 ) ( Δ t 2 ) − r 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(r^{2}+(v^{2})(Delta t^{2})-r^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 r 2 {displaystyle {boldsymbol {r^{2}}}} 和 r 2 {displaystyle {boldsymbol {r^{2}}}} 相抵销, a = lim Δ t → 0 2 ( v 2 ) ( Δ t 2 ) Δ t 2 ( r 2 + ( v 2 ) ( Δ t 2 ) + r ) {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})(Delta t^{2})}{Delta t^{2}({sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r)}}}此时 t 2 {displaystyle {boldsymbol {t^{2}}}} 和 t 2 {displaystyle {boldsymbol {t^{2}}}} 上下相抵销为 1 {displaystyle {boldsymbol {1}}} , a = lim Δ t → 0 2 ( v 2 ) r 2 + ( v 2 ) ( Δ t 2 ) + r {displaystyle a=lim _{Delta tto 0}{frac {2(v^{2})}{{sqrt {r^{2}+(v^{2})(Delta t^{2})}}+r}}}a = 2 ( v 2 ) r 2 + r {displaystyle a={frac {2(v^{2})}{{sqrt {r^{2}}}+r}}}a = 2 ( v 2 ) 2 r {displaystyle a={frac {2(v^{2})}{2r}}}因此 a = v 2 r {displaystyle a={frac {v^{2}}{r}}}

相关

  • 喹诺酮喹诺酮(英语:quinolone)是一类人工合成的含4-喹诺酮基本结构,对细菌DNA螺旋酶具有选择性抑制的抗菌剂。1962年最早的喹诺酮类药物萘啶酸首先用于临床,由于其抗菌谱窄、口服吸收差
  • 结肠炎医学中,结肠炎指结肠的炎症,常用来描述大肠(结肠、盲肠和直肠)的发炎。慢性的可能是急性和自限的,也可能是慢性的,大致属于消化系统疾病。腹泻是结肠炎早期的主要症状。常反复发作
  • 8-羟基喹啉8-羟基喹啉是一种有机物,化学式为C9H7NO。8-羟基喹啉通常利用2-氨基苯酚通过斯克劳普合成反应得到。金属离子的测定与分离。恰加斯病: nitroimidazole (Benznidazole#)Pentav
  • 老年人老年(英语:old age),一般指生物的生命周期一个阶段,即中年到死亡的一段时间不同的文化圈对于老年人有着不同的定义。由于生命的周期是一个渐变的过程,壮年到老年的分界线往往是很
  • 巴比伦密码《生死新纪元》(英语:Babylon A.D.,港台译《巴比伦密码》)是一部于2008年上映的美、法合拍的科幻电影,由法国导演马修·卡索维茨(Mathieu Kassovitz)执导,剧情改编自Maurice G. Dant
  • 圣米歇尔喷泉坐标:48°51′11.32″N 2°20′37.32″E / 48.8531444°N 2.3437000°E / 48.8531444; 2.3437000圣米歇尔喷泉(Fontaine Saint-Michel,法语发音:.mw-parser-output .IPA{font-fa
  • 何积丰何积丰(1943年8月-),计算机科学家,中国科学院院士。现任华东师范大学软件学院院长,华东师范大学终身教授、博士生导师。上海嵌入式系统研究所所长。研究方向为形式化方法;高可信与
  • 2010年海地地震2010年海地地震于UTC2010年1月12日21时53分9秒(海地当地时间12日下午16时53分9秒)左右发生,地震震级为里氏震级7.0级。震中位于海地首都太子港以西南方25千米,震源距离地表13千
  • J06A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码J06(免疫血清和免疫球蛋白)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WH
  • 普通高中普通型高级中等学校,简称普通高中,是台湾高级中学的一门类科,也是通往大学的主要通道。主要教授的科目有国文、英文、数学、历史、地理、公民与社会、物理、化学、生物、地球科