维格纳准概率分布

✍ dations ◷ 2025-04-26 12:14:40 #量子力学,连续分布,基本物理概念,数学物理,奇特几率,量子光学

维格纳准概率分布 (又称维格纳方程或是Wigner–Ville distribution)是个准概率分布. 1932年,Eugene winger利用维格纳准概率分布开始研究将经典统计力学用量子修正来解释的方法。目标是连接出现在薛定谔方程里的波函数至概率分布里的相空间.

在给定的量子力学波函数(),维格纳准概率分布是所有空间自相关函数的一个母函数.因此1927时,赫尔曼·外尔 提出在量子概率密度函数,它扮演真实相空间函数及厄密特运算子的映射角色。事实上,它是密度矩阵中的维格纳-魏尔变换,用来实现在相空间中的运算子。后来由让威乐在1948年重新推导成为信号的本地时频能量的二次表示法,可以有效的作为频谱图。

在1949年,何塞·恩里克·莫雅尔认可它作为量子动量生成函数,因此在相空间里,变成所有量子期望值和量子力学的一种优雅编码的基础,(比较时频分析转换关系)。它应用在统计力学,量子化学,量子光学,经典光学和信号分析,在不同的领域,如电子工程,地震,时频分析,音乐信号,在生物学和语音处理谱图,和发动机设计。

一个经典的粒子具有确定的位置和动量,因此它是由相空间中的点表示。 在刘维尔密度中,发现粒子在相空间中特定位置的概率是由一个概率分布决定。然而由于不确定性原理,这种严格的解释未能阐述量子粒子。相反地,准概率维格纳分布扮演一个类似的角色,虽然并不满足所有传统概率分布特性但满足经典分布不能使用有界的特性。

例如,维格纳分布通常可分析负的状态,是量子波干涉方便的指标。透过一个尺寸大于ħ的滤波器(例如,用一个相空间高斯,一个魏尔斯特拉斯函数转换来得到Husimi表示式如下)可以平滑化维格纳分布,创造一个正半定的功能。

负值的区域可以被证实是小的,这些区域不能延伸到紧凑区域以外几个ħ,所以根据消失。由于不确定性原理不允许相空间区域小于ħ内精确位置,因此反应"负的概率"少一点的自相矛盾。

维格纳分布(,)定义如下:

P ( x , p )   = d e f   1 π ψ ( x + y ) ψ ( x y ) e 2 i p y / d y {\displaystyle P(x,p)~{\stackrel {\mathrm {def} }{=}}~{\frac {1}{\pi \hbar }}\int _{-\infty }^{\infty }\psi ^{*}(x+y)\psi (x-y)e^{2ipy/\hbar }\,dy\,} |⟩ = .这个维格纳转换是魏尔变换的反转换,它映射相空间方程至希尔伯特空间。

因此,维格纳函数是量子力学在相空间的基石。

1949年何塞·恩里克·莫雅尔阐明维格纳分布是如何提供相空间的整合测量(类似于一个概率密度分布),让相空间方程的期望值(,)能够由魏尔转换(即魏尔变换和以下的性值七)以经典概率论的方法唯一的和运算子产生关联。

特别地,的期望值是维格纳变换的"相空间平均",如下

1. (, )是实数

2. 和的概率分布由边缘决定:

3. (, )有以下的反射对称性:

4. (, )是伽利莱协变:

5. 如果没有外力作用,在相位空间中每个点的运动方程符合经典力学:

事实上如果外力是谐波也满足

6. 状态重叠的计算公式:

7. 期望值运算子被认为是维格那变换的相空间平均:

8. 为了使(, )代表物理(正)密度矩阵:

9. 利用柯西- Schwarz不等式,对于纯的状态,它被限制为有界,

对于希伯特空间的运算子和相空间的而言,维格纳变换是一般的反转换,如下:

厄密特运算子映射至实域。它的反转换被称为魏尔转换,

相关

  • 撒拉森人撒拉森人,或译萨拉森人,系源自阿拉伯文的“东方人(شرقيين‎、sharqiyyin)”,转写成希腊文作Σαρακηνοί、Sarakēnoí,拉丁文作Saracen(撒拉坚),中文则受英语化或晚期拉
  • 军事工程军事工程(Military engineering)可以大致定义为设计及建立军事设施及设备,维持军事运输及通讯的艺术、工程及实务。军事工程也要负责军事战术的后勤。现代的军事工程和土木工程
  • 驴(学名:Equus africanus asinus)是常见的马科马属家畜,是非洲野驴被人类驯化所形成的亚种,和马体形相似,但耳朵长,尾巴有尾柄,类似牛尾巴。驴是奇蹄目的成员。其他成员包括斑马和马
  • 滴定滴定(titration),在分析化学中是一种分析溶液成分的方法。将标准溶液逐滴加入被分析溶液中,用颜色变化、沉淀或电导率变化等来确定反应的终点。由于体积测定是滴定的关键,滴定分
  • 钩吻碱钩吻碱(C20H22N2O2)是一种吲哚生物碱,分离自于原产于热带和亚热带美洲和东南亚的开花植物钩吻属。是一种麻痹剧毒化合物,接触可导致死亡。通常具有作为哺乳动物甘氨酸受体激动剂
  • 克劳斯·克莱因费尔特克劳斯·克莱因费尔特 (德语:Klaus-Christian Kleinfeld, 1957年11月6日-) 生于德国不来梅,德国职业经理人。克劳斯·克莱因费尔特生于一个工人家庭。曾在哥廷根大学学习企业经
  • 史密斯诉奥尔赖特案史密斯诉奥尔赖特案,321 U.S. 649 (1944),是有关投票权以及延伸到种族隔离制度,美国最高法院的里程碑判决。本案推翻了民主党在得州使用的全白人初选,以及其他也使用该规则的州
  • 弗朗西斯科·亨托弗朗西斯科·亨托(Francisco "Paco" Gento López) (生于1933年10月21日)是前西班牙足球运动员。亨托开始他的职业生涯1952年在桑坦德竞技,在接下的赛季搬到了皇家马德里。他曾
  • 林国强 (1948年)林国强(1948年10月-),男,汉族,山东烟台人,中华人民共和国政治人物,曾任广西壮族自治区政协副主席,第九、十届全国人大代表。
  • 杉山加代子杉山加代子(1961年10月31日-)是一名日本前排球运动员。她在1984年夏季奥林匹克运动会中,参加了女子排球比赛并获得铜牌。她也曾参加过1982年亚洲运动会。