维格纳准概率分布

✍ dations ◷ 2025-11-09 04:04:57 #量子力学,连续分布,基本物理概念,数学物理,奇特几率,量子光学

维格纳准概率分布 (又称维格纳方程或是Wigner–Ville distribution)是个准概率分布. 1932年,Eugene winger利用维格纳准概率分布开始研究将经典统计力学用量子修正来解释的方法。目标是连接出现在薛定谔方程里的波函数至概率分布里的相空间.

在给定的量子力学波函数(),维格纳准概率分布是所有空间自相关函数的一个母函数.因此1927时,赫尔曼·外尔 提出在量子概率密度函数,它扮演真实相空间函数及厄密特运算子的映射角色。事实上,它是密度矩阵中的维格纳-魏尔变换,用来实现在相空间中的运算子。后来由让威乐在1948年重新推导成为信号的本地时频能量的二次表示法,可以有效的作为频谱图。

在1949年,何塞·恩里克·莫雅尔认可它作为量子动量生成函数,因此在相空间里,变成所有量子期望值和量子力学的一种优雅编码的基础,(比较时频分析转换关系)。它应用在统计力学,量子化学,量子光学,经典光学和信号分析,在不同的领域,如电子工程,地震,时频分析,音乐信号,在生物学和语音处理谱图,和发动机设计。

一个经典的粒子具有确定的位置和动量,因此它是由相空间中的点表示。 在刘维尔密度中,发现粒子在相空间中特定位置的概率是由一个概率分布决定。然而由于不确定性原理,这种严格的解释未能阐述量子粒子。相反地,准概率维格纳分布扮演一个类似的角色,虽然并不满足所有传统概率分布特性但满足经典分布不能使用有界的特性。

例如,维格纳分布通常可分析负的状态,是量子波干涉方便的指标。透过一个尺寸大于ħ的滤波器(例如,用一个相空间高斯,一个魏尔斯特拉斯函数转换来得到Husimi表示式如下)可以平滑化维格纳分布,创造一个正半定的功能。

负值的区域可以被证实是小的,这些区域不能延伸到紧凑区域以外几个ħ,所以根据消失。由于不确定性原理不允许相空间区域小于ħ内精确位置,因此反应"负的概率"少一点的自相矛盾。

维格纳分布(,)定义如下:

P ( x , p )   = d e f   1 π ψ ( x + y ) ψ ( x y ) e 2 i p y / d y {\displaystyle P(x,p)~{\stackrel {\mathrm {def} }{=}}~{\frac {1}{\pi \hbar }}\int _{-\infty }^{\infty }\psi ^{*}(x+y)\psi (x-y)e^{2ipy/\hbar }\,dy\,} |⟩ = .这个维格纳转换是魏尔变换的反转换,它映射相空间方程至希尔伯特空间。

因此,维格纳函数是量子力学在相空间的基石。

1949年何塞·恩里克·莫雅尔阐明维格纳分布是如何提供相空间的整合测量(类似于一个概率密度分布),让相空间方程的期望值(,)能够由魏尔转换(即魏尔变换和以下的性值七)以经典概率论的方法唯一的和运算子产生关联。

特别地,的期望值是维格纳变换的"相空间平均",如下

1. (, )是实数

2. 和的概率分布由边缘决定:

3. (, )有以下的反射对称性:

4. (, )是伽利莱协变:

5. 如果没有外力作用,在相位空间中每个点的运动方程符合经典力学:

事实上如果外力是谐波也满足

6. 状态重叠的计算公式:

7. 期望值运算子被认为是维格那变换的相空间平均:

8. 为了使(, )代表物理(正)密度矩阵:

9. 利用柯西- Schwarz不等式,对于纯的状态,它被限制为有界,

对于希伯特空间的运算子和相空间的而言,维格纳变换是一般的反转换,如下:

厄密特运算子映射至实域。它的反转换被称为魏尔转换,

相关

  • 阿瓦隆尼亚大陆阿瓦隆尼亚大陆(Avalonia)是个远古微大陆或地体,存在于寒武纪到志留纪,范围包含现今的西欧、加拿大大西洋省份、以及部分美国东岸地区。其名称来自于加拿大纽芬兰省东南部的阿瓦
  • 亚捷1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。阿尔克伊(法语:Arcueil)是法国法兰西岛大区马恩河谷省的一个市镇,属于拉伊莱罗斯区。该市镇2
  • 死亡焦虑 (心理学)死亡焦虑是由死亡想法引起的焦虑。 其一将死亡焦虑定义为当一个人想到死亡的过程,或者停止'存在'时,死亡焦虑被定义为"恐惧、忧虑或焦虑的感觉"。其二为死亡恐惧症(死亡恐怖症
  • 近交系动物近交系动物(英语:Inbred Strain Animals)是指经过至少连续20代的、完全由同胞兄弟姐妹交配、或者亲代与子代交配而培育的、近交系数大于99%的动物品系。在近交系中,所有个体都可
  • 战略地理战略地理,也称战略地理学(Strategic geography),是一类对于国家安全与国家繁荣有关的空间领域控制与管理。其学科研究人类需求和人类发展的战略空间。它隶属于人文地理学,后者是
  • 慎召民慎召民(20世纪-), 浙江省湖州市人,中国当代著名巨笔书法家。2006年,在多哈亚运会闭幕式的“广州十分钟”表演上,用一支30多公斤重的湖笔,写下“和谐亚洲”四个硕大汉字,每个字大约16
  • 崔姓崔(通用拼音:Tsui;汉语拼音:Cui;拉丁文:Choi;谚文:최),是汉字姓氏之一,在《百家姓》中排第189位,目前在中国大陆的人口统计中排名第56,约有509万人(2013年统计资料)。但这个姓氏同时也常
  • 南岸区文物保护单位重庆市南岸区共公布三批文物保护单位,分别列表如下。
  • 瓦伊科姆瓦伊科姆(Vaikom),是印度喀拉拉邦Kottayam县的一个城镇。总人口22637(2001年)。该地2001年总人口22637人,其中男性10955人,女性11682人;0—6岁人口2165人,其中男1089人,女1076人;识字率
  • 吴鸿源吴鸿源,字春坡,为中国清朝武官官员,抗法名将,本籍福建省同安县。 行伍出身的吴鸿源于1869年(同治8年)奉旨接替萧瑞芳,于台湾地区担任台湾水师协副将。而隶属台湾镇之下的此官职是台