运动蛋白

✍ dations ◷ 2024-11-05 16:25:45 #运动蛋白
驱动蛋白(英语:Kinesin)是一类蛋白质超级家族,属于分子马达的一种,其成员代表驱动蛋白-1(Kinesin-1)在1985年被发现。驱动蛋白是由单体组成的多聚体,其“头部”具有ATP酶活性,能通过水解ATP获得能量,改变构型,进行运动。它和动力蛋白一样,以微管构成的轨道进行滑行。与可以朝微管两极运动的动力蛋白有些不一样,一种驱动蛋白只能朝一个方向运动,如驱动蛋白-1可以沿着微管的+运动,而另一些驱动蛋白则沿着-极运动,在细胞内起运输作用,比如牵拉染色体,参与有丝分裂、减数分裂和细胞迁移过程。最近的研究又发现一批与驱动蛋白-1结构相关的蛋白质,它们一起构成驱动蛋白超级家族。这些蛋白质存在于绝大多数真核生物中。它们共有一保守的“马达”域,含有约350氨基酸残基,内有ATP结合位点和微管结合位点。即使在植物中,如拟南芥(Arabidopsis thaliana)中,目前也发现了A,B,C和D四种类驱动蛋白蛋白。20世纪80年代中期,人们虽然知道细胞内存在着分子马达,它们是ATP酶,靠着细胞骨架(具体来说是其中的微管)在细胞内执行者运输任务,但其具体结构仍未被确定。驱动蛋白的同僚——动力蛋白一直是该角色的主要候选者。一直到了1985年,Lasek, RJ和Brady, ST则在nature上发表了《AMP-PNP可以易化轴浆中运输泡对微管的粘着》(Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP)一文,记述了他们的观察所得:ATP同型物AMP-PNP可以抑制轴突里的快速运输,同时会使细胞器与微管连合更紧密。这说明了AMP-PNP可促进微管——细胞器——马达分子复合体的形成。而这种马达蛋白质,很快就在同年被Vale RD, Reese TS等人确定了。它们在乌贼那巨型的神经轴突轴浆中发现了一种可溶的蛋白质,可以使微管在玻璃上,乳胶微球在微管上和轴浆细胞器在微管上移动。而且他们发现牛的脑部有着与之同源的蛋白质。这种蛋白质在ATP同型物——亚氨二磷酸盐(imidodiphosphate)的存在下,显示相当强的微管亲和力。他们还将它从微观上分离,与ATP混合放到凝胶过滤(gel filtration)柱上,该蛋白质在柱上移行,并被测重,得出60万atom的分子量,11到12和6到7万atom的多肽链。这些数据有别于以往动力蛋白和肌球蛋白的数据。因此试验人员认为,他们得到了一种新的分子马达,并将之命名为驱动蛋白。而分子马达的大热门——动力蛋白存在的确凿实验证据则在两年后的1987年才发表。酿酒酵母(Saccharomyces cerevisiae)的驱动蛋白基因序列最初是1992年由Beltran,C所发表。而在NCBI上的人体驱动蛋白马达域的mRNA和蛋白质序列则是由南京医科大学在2001年提供的。接着,2002到2003年,富克葡萄孢盘菌(Botryotinia fuckeliana)、异旋孢腔菌(Cochliobolus heterostrophus)和玉米黑粉菌(Ustilago maydis)驱动蛋白马达域的序列也被查明。同时,科学家还在如黑猩猩(Pan troglodytes)体内,预测了蛋白质异形体1和2,它们和人类的驱动蛋白显示出98%的同源性,而各自演化成为相同蛋白质的期望值为0(就是指,假如两个蛋白质独立进化,是没有可能达到如此98%相似的程度的)。换句话说,它们是来自同一祖先。驱动蛋白是由单体组成的聚合体。两条包括催化活性的重链,而大部分驱动蛋白家族的成员重链都有一段α螺旋,两个单体的α螺旋因组成卷曲螺旋(coiled coil)而紧密结合。另外它们还有两条不具有催化活性的轻链。比如驱动蛋白-1是一alpha2-beta2的异四聚体,驱动蛋白-5则是同四聚体,驱动蛋白-2则是异三聚体。驱动蛋白-1在高离子强度环境下会呈现其未折叠状态,沉降系数为9S。相反,它会在低离子浓度时折叠,沉降系数变为9S。折叠是重链的头部和尾部的相互间作用促成的。这个结论,是根据实验观察得出的。无需轻链的存在,单单是由重链组成的二聚体也会从5S的未折叠状态改变构象成为7S的折叠状态。细胞却要避免驱动蛋白的折叠,因为折叠状态的驱动蛋白并不能快速行进,而且对微管的亲和力也不高。从扫描电子显微镜观察得出的结果,驱动蛋白1和驱动蛋白14(有被命为Ncd)虽然回响着不同的方向运动,但是它们头部与微观结合的结构却是相似的。驱动蛋白-1是第一种被发现的驱动蛋白,存在于目前已研究的所有多细胞生物即其所有细胞种类之中,并且可见于细胞生长的各个阶段。大部分的驱动蛋白-1都游离于胞质中,一些则会连接一些和胞膜相连的细胞器,如小泡,内质网,还有内质网与高尔基体之间的膜性结构。科学家将在试管中得到证实的抗驱动蛋白-1抗体注射入或者散布在细胞上,再观察其结果,可见微管依赖的溶酶体,高尔基体驱动的小泡,与胞膜连接的色素颗粒还有中间纤维的运输都受到抑制。在另一组实验中,科学家将反义寡核苷酸结合到驱动蛋白-1的mRNA上,抑制其翻译,发现轴突内各种蛋白质的顺行性运输(anterograde axonal transport)都受阻。加上其它数据,可以推测驱动蛋白-1会拉动细胞器,在微管上朝着其+极运动。科罗拉多大学(University of Colorado)的比尔·萨斯通带领其实验室对黑腹果蝇的驱动蛋白-1或驱动蛋白重链(kinesin heavy chain,简称Khc)的致死性隐性突变进行了研究,并得出结论:驱动蛋白-1是轴突快速运输的一种马达。果蝇在死亡之前,患有进行性远端麻痹(progressive distal paralysis)。而且麻痹最严重的部位是后部体节的腹侧面。这样会造成其幼虫身体收缩的不对称,尾部会有节奏的往上翘并屈爬向前。这种表现型是神经系统因为轴突快速运输功能障碍而受损。在果蝇幼虫第二龄期(instar),体节神经轴突末端会与胞膜结合的细胞器共同形成膨大,这种堵塞应该是由失能的驱动蛋白,运输无力,货物被堆积积聚而造成的膨大会变得越来越大,这会引起遗传性神经接合,顺行性和逆行性(retrograde)快速运输都会受阻。驱动蛋白这种变异会在第三龄期因为降低离子通道活性,而造成动作电位散布受阻。因此实验人员认为,细胞器阻塞使得离子通道成分顺行性运输受阻。来自免疫细胞学方面的证据更是进一步指出,甚至是II型成束蛋白(Fasciclin II),突触结合蛋白(synaptotagmin)和突触融合蛋白(syntaxin)这些神经突触组成所需的蛋白质也一样会受阻。运动神经元末端营养不足。因此这些果蝇在第三龄期后侧体节轴突数量只有正常的1/5,前端的只有正常1/3。不但是突触的数量,就是连神经递质也会减少。又因为果蝇神经元胞体在头部,其支配尾部体节的轴突要比支配前端的长,所以驱动蛋白-1的失活会导致这种长短距不一的效果。变异果蝇的奇怪表现型也得到了解释。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22  · 2.1/2/3/4/5/6/7(2.7.10/11-12)/8/9  · 3.1/2/3/4(3.4.21/22/23/24)/5/6/7/8/9/10/11/12/13  ·

相关

  • 基群基群(英语:Basal)是生物学中的术语,专指在亲缘关系学中最早分离出去的大型演化支,并且通常会位于亲缘分支分类法最底层处,是其它后来才分化出去的演化支的外类群。许多生物学家(特
  • 阿联酋阿拉伯半岛(白色)阿拉伯联合酋长国(阿拉伯语:دولة الإمارات العربية المتحدة‎),通称阿联酋,是由阿布扎比、沙迦、迪拜、阿治曼、富查伊拉、乌姆盖万、
  • 瓜氨酸血症瓜氨酸血症(Citrullinemia)是一种遗传的障碍,使得血液内积聚氨及其他有毒物质。瓜氨酸血症属于一类遗传病,称为尿素循环代谢障碍。尿素循环是一连串的在肝脏内的化学反应,包括处
  • 鸡雁小纲鸡雁小纲(学名:Galloanserae)是指雁形目及鸡形目两目的鸟类。它们在解剖及分子、形态及DNA序列、与及反转录转座子标记上的相似,显示它们是演化上的近亲。虽然鸡雁小纲的成员在
  • 马鞭草马鞭草(学名:Verbena officinalis)为马鞭草科植物。多年生直立草本植物,基部木质化;四方形茎;倒卵形至长椭圆形的叶子对生,边缘有锯齿,叶片通常3深裂,大裂片复分小裂;穗状花序顶生或腋
  • 奶豆腐奶豆腐,蒙古民族奶食品之一,属于奶制品。 其作法先将酸奶子中的奶油提取出后,将其中水分煮干使其凝固,再放入模子中成型或以布袋挤压成型之后晒干可食用且便有保存。奶豆腐可分
  • 斯托克斯黏度(英语:Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在室温(25℃)及常压(1巴)下,空气的黏度为18.5μPa·s,大约比在相
  • 初潮初潮(英语:menarche),又称为初经,是指第一次月经。代表少女的身体经历青春期的变化。初潮通常在胸部开始发育后一两年出现。初潮代表子宫内膜受到雌激素刺激而发育了,也代表从子宫
  • 光源光通常指的是人类眼睛可以见的电磁波(可见光),视知觉就是对于可见光的知觉。可见光只是电磁波谱上的某一段频谱,一般是定义为波长介于400至700奈(纳)米(nm)之间的电磁波,也就是波长比
  • 许旺泰奥多尔·施旺(德语:Theodor Schwann,1810年12月7日-1882年1月11日),德国动物学家。他在生物领域贡献巨大,包括发展了细胞学说,施旺细胞的发现和对胃蛋白酶的发现与研究。更进一步