音高集合

✍ dations ◷ 2025-12-08 05:33:15 #记谱法

音高集合(英语:pitch class)是一个集合,其中所有的音高都刚好差整数倍的八度音,举例来说,音高集合C包含了所有八度音中的C。若以科学音高记法表示,则音高集合C如下

其中,C2比C1高八度音,频率为后者两倍,数字每多一,就高一个八度,频率变两倍。虽然n没有正式的范围,但人耳只听得到部分的音高(约20赫兹到20000赫兹),故n大多范围在0到11之间。人耳对音高的感知是对数–线性,且在同一音高集合中的音高,因为频率为倍数关系,彼此有叠加的关系,故听起来非常和谐,有相似的感受,此关系称为“等价八度”,故音高集合的概念非常的重要。

要注意在标准西方音乐标记中,不同的符号可能代表着相同的音高,譬如: B♯3, C4, 和 D双降4 都是相同的,因此也有着一样的色度,被归类在同一种音高集合中。

为了避免相同标记造成的误会,音高集合通常用数字来表示音高集合,以常见的十二平均律为例,一个八度可以平均分成十二个等分,数字由0到11,每个数字都比前个数字高一个半音,不会有12的出现,因为12刚好到达八度音,频率两倍,会算在音高集合第0类。故可直接将MIDI值除以12,余数相同的就会在对应的音高集合中。

根据美国标准协会定义,A4的频率为440赫兹,故低一个八度音的A3频率为A4一半(220赫兹)。A3到A4之间差了一个八度音程,由十二平均率可平分为12等份的半音,r为每个半音所差的频率倍数,B比A高了两个半音,C比A高了三个半音,可依此计算各个音符的频率。 r = 2 12 {\displaystyle r={\sqrt{2}}}

F r e q B 4 = 440 × r 2 = 440 × 2 2 12 493.88 H z {\displaystyle Freq_{B_{4}}=440\times r^{2}=440\times 2^{\frac {2}{12}}\approx 493.88Hz}

F r e q C 4 = 440 × r 3 = 440 × 2 3 12 523.25 H z {\displaystyle Freq_{C_{4}}=440\times r^{3}=440\times 2^{\frac {3}{12}}\approx 523.25Hz}

MIDI 值用0~127的实数来代表C-2到G8的音高,若高一个半音,则数字多一,A4的MIDI值为69,B4的MIDI值为71,C4的MIDI值为72以此类推。若想计算每个音高的MIDI值和频率,可用以下方程式计算,f 是基频(单位为赫兹),p是MIDI值:

p = 69 + 12 log 2 ( f / 440 ) {\displaystyle p=69+12\log _{2}({f/440})}

故可将MIDI值直接除以12,即可得到对应音高集合,我们也可用符号取代整数标记法。

0 C {\displaystyle 0\equiv C}

1 C # / D b {\displaystyle 1\equiv C\#/Db}

2 D {\displaystyle 2\equiv D}

但有时10,11分别会用"t","e"表示,或是"A","B"表示。

音高集合与色度可应用在复音(和弦)的特征抽取,复音代表着同时有两个以上的音,彼此可能有不同的音频,故有多个音高集合所构成,且可转换成色度用向量去纪录各个音高集合的比重,如果以最常见的十二平均律为例,可以用一个十二维的向量来代表色度,第一维代表着音高集合C的比重,第二维代表着音高集合C#的比重,第三维代表着音高集合D的比重,以此类推,则C大三和弦,以色度表示,第一维(C)、第五维(E)、第九维(G)的值会特别大,但是其他九维的值也不会等于零,因为弦乐器有除了基本音频外,还有第一泛音、第二泛音、第三泛音等等,且和弦为复音,彼此的泛音又会共鸣,造成许多组成音以外的音。若可取出大量和弦音讯的十二维色度特征,即可透过机器学习的方法,由电脑自动判断新音讯之合弦。但此特征抽取的方法有个小缺陷,因为色度无法分辨音高来自哪个八度音,故无法分辨出二度音和九度音,故会造成有些特殊和弦无法区别,比如说九和弦、十一和弦、十三和弦。

1. Arnold Whittall, The Cambridge Introduction to Serialism (New York: Cambridge University Press, 2008): 276. ISBN 978-0-521-68200-8 (pbk).

2. Don Michael Randel, ed. (2003). "Set theory", The Harvard Dictionary of Music, p.776. Harvard. ISBN 9780674011632.

3. Tymoczko, Dmitri (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, p.30. Oxford Studies in

4. Music Theory. ISBN 9780199714353.

5. Müller, Meinard (2007). Information Retrieval for Music and Motion, p.60. ISBN 9783540740483. "A pitch class is defined to be the set of all pitches that share the same chroma."

6. Whittall (2008), p.273.Robert D. Morris, "Generalizing Rotational Arrays", Journal of Music Theory 32, no. 1 (Spring 1988): 75–132, citation on 83.

1. Purwins, Hendrik (2005). "Profiles of Pitch Classes: Circularity of Relative Pitch and Key—Experiments, Models, Computational Music Analysis, and Perspectives". Ph.D. Thesis. Berlin: Technische Universität Berlin.

2. Rahn, John (1980). Basic Atonal Theory. New York: Longman; London and Toronto: Prentice Hall International. ISBN 0-02-873160-3. Reprinted 1987, New York: Schirmer Books; London: Collier Macmillan.

3. Schuijer, Michiel (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. Eastman Studies in Music 60. Rochester, NY: University of Rochester Press. ISBN 978-1-58046-270-9.

相关

  • 1968年格勒诺布尔冬奥会第十届冬季奥林匹克运动会(英语:the X Olympic Winter Games,法语:les Xes Jeux olympiques d'hiver),于1968年2月6日至2月18日在法国格勒诺布尔举行。这是法国第二次主办冬季奥林
  • 克劳斯·冯·克利钦克劳斯·冯·克利青(德语:Klaus von Klitzing,1943年6月28日-),德国物理学家。他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。冯·
  • 自闭症光谱的共伴疾病 (共病)自闭症光谱疾患(包含亚斯伯格综合征)为起始于儿童且持续到成人时期的发展障碍。该疾患主要影响了三个与人类成长相关的重要领域:沟通、社交互动、局限的行为/思考模式。 当前已
  • 弗里德里希·威廉·穆尔瑙F·W·穆尔瑙(德语:Friedrich Wilhelm Murnau、1888年12月28日-1931年3月11日)是默片时代最有影响力的导演之一,出生于德国,后来前往好莱坞发展。1888年生于德意志帝国比勒费尔德,
  • TCP/IP互联网协议套件(英语:Internet Protocol Suite,缩写IPS)是一个网络通信模型,以及一整个网络传输协议家族,为网际网络的基础通信架构。它常被通称为TCP/IP协议族(英语:TCP/IP Protoco
  • 鬼方鬼方,源自曾与轩辕黄帝联姻的氏族−大隗氏,是商代的小国部族之一,位于今陕西北部、山西西北部和内蒙古西部。在商朝有许多小国都称“方”,相当于“邦”的意思,例如:土方、
  • 捷克共和国天鹅绒分离(捷克语:Zánik Československa、斯洛伐克语:Rozdelenie Česko-Slovenska),亦称天鹅绒离婚。指的是自1993年1月1日起,原先的捷克斯洛伐克分裂为捷克共和国和斯洛伐克
  • 国际经济研究所南开大学国际经济研究所,简称南开大学国经所,1987年11月9日正式成立,位于南开大学八里台校区,是原国家教委批准成立的专注研究国际经济理论与政策的研究机构。南开大学国经所内
  • 萝北县萝北县是黑龙江省鹤岗市下辖的一个县。因位于托罗山之北而得名。下辖5个镇、5个乡,1个民族乡,91个行政村。凤翔镇、鹤北镇、名山镇、团结镇、肇兴镇、云山镇、东明朝鲜族乡、
  • 字级字级(英语:Q)是印刷字体所使用的一个长度单位,用于表示字型的大小。1 级(1 Q)等于0.25 mm,即四分之一毫米,因此单位实际上属于公制单位系统。“级”这个单位起源于日本的照相排版