音高集合

✍ dations ◷ 2025-11-05 06:22:03 #记谱法

音高集合(英语:pitch class)是一个集合,其中所有的音高都刚好差整数倍的八度音,举例来说,音高集合C包含了所有八度音中的C。若以科学音高记法表示,则音高集合C如下

其中,C2比C1高八度音,频率为后者两倍,数字每多一,就高一个八度,频率变两倍。虽然n没有正式的范围,但人耳只听得到部分的音高(约20赫兹到20000赫兹),故n大多范围在0到11之间。人耳对音高的感知是对数–线性,且在同一音高集合中的音高,因为频率为倍数关系,彼此有叠加的关系,故听起来非常和谐,有相似的感受,此关系称为“等价八度”,故音高集合的概念非常的重要。

要注意在标准西方音乐标记中,不同的符号可能代表着相同的音高,譬如: B♯3, C4, 和 D双降4 都是相同的,因此也有着一样的色度,被归类在同一种音高集合中。

为了避免相同标记造成的误会,音高集合通常用数字来表示音高集合,以常见的十二平均律为例,一个八度可以平均分成十二个等分,数字由0到11,每个数字都比前个数字高一个半音,不会有12的出现,因为12刚好到达八度音,频率两倍,会算在音高集合第0类。故可直接将MIDI值除以12,余数相同的就会在对应的音高集合中。

根据美国标准协会定义,A4的频率为440赫兹,故低一个八度音的A3频率为A4一半(220赫兹)。A3到A4之间差了一个八度音程,由十二平均率可平分为12等份的半音,r为每个半音所差的频率倍数,B比A高了两个半音,C比A高了三个半音,可依此计算各个音符的频率。 r = 2 12 {\displaystyle r={\sqrt{2}}}

F r e q B 4 = 440 × r 2 = 440 × 2 2 12 493.88 H z {\displaystyle Freq_{B_{4}}=440\times r^{2}=440\times 2^{\frac {2}{12}}\approx 493.88Hz}

F r e q C 4 = 440 × r 3 = 440 × 2 3 12 523.25 H z {\displaystyle Freq_{C_{4}}=440\times r^{3}=440\times 2^{\frac {3}{12}}\approx 523.25Hz}

MIDI 值用0~127的实数来代表C-2到G8的音高,若高一个半音,则数字多一,A4的MIDI值为69,B4的MIDI值为71,C4的MIDI值为72以此类推。若想计算每个音高的MIDI值和频率,可用以下方程式计算,f 是基频(单位为赫兹),p是MIDI值:

p = 69 + 12 log 2 ( f / 440 ) {\displaystyle p=69+12\log _{2}({f/440})}

故可将MIDI值直接除以12,即可得到对应音高集合,我们也可用符号取代整数标记法。

0 C {\displaystyle 0\equiv C}

1 C # / D b {\displaystyle 1\equiv C\#/Db}

2 D {\displaystyle 2\equiv D}

但有时10,11分别会用"t","e"表示,或是"A","B"表示。

音高集合与色度可应用在复音(和弦)的特征抽取,复音代表着同时有两个以上的音,彼此可能有不同的音频,故有多个音高集合所构成,且可转换成色度用向量去纪录各个音高集合的比重,如果以最常见的十二平均律为例,可以用一个十二维的向量来代表色度,第一维代表着音高集合C的比重,第二维代表着音高集合C#的比重,第三维代表着音高集合D的比重,以此类推,则C大三和弦,以色度表示,第一维(C)、第五维(E)、第九维(G)的值会特别大,但是其他九维的值也不会等于零,因为弦乐器有除了基本音频外,还有第一泛音、第二泛音、第三泛音等等,且和弦为复音,彼此的泛音又会共鸣,造成许多组成音以外的音。若可取出大量和弦音讯的十二维色度特征,即可透过机器学习的方法,由电脑自动判断新音讯之合弦。但此特征抽取的方法有个小缺陷,因为色度无法分辨音高来自哪个八度音,故无法分辨出二度音和九度音,故会造成有些特殊和弦无法区别,比如说九和弦、十一和弦、十三和弦。

1. Arnold Whittall, The Cambridge Introduction to Serialism (New York: Cambridge University Press, 2008): 276. ISBN 978-0-521-68200-8 (pbk).

2. Don Michael Randel, ed. (2003). "Set theory", The Harvard Dictionary of Music, p.776. Harvard. ISBN 9780674011632.

3. Tymoczko, Dmitri (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, p.30. Oxford Studies in

4. Music Theory. ISBN 9780199714353.

5. Müller, Meinard (2007). Information Retrieval for Music and Motion, p.60. ISBN 9783540740483. "A pitch class is defined to be the set of all pitches that share the same chroma."

6. Whittall (2008), p.273.Robert D. Morris, "Generalizing Rotational Arrays", Journal of Music Theory 32, no. 1 (Spring 1988): 75–132, citation on 83.

1. Purwins, Hendrik (2005). "Profiles of Pitch Classes: Circularity of Relative Pitch and Key—Experiments, Models, Computational Music Analysis, and Perspectives". Ph.D. Thesis. Berlin: Technische Universität Berlin.

2. Rahn, John (1980). Basic Atonal Theory. New York: Longman; London and Toronto: Prentice Hall International. ISBN 0-02-873160-3. Reprinted 1987, New York: Schirmer Books; London: Collier Macmillan.

3. Schuijer, Michiel (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. Eastman Studies in Music 60. Rochester, NY: University of Rochester Press. ISBN 978-1-58046-270-9.

相关

  • 脑血管障壁脑血管障壁(英语:blood–brain barrier ,BBB),也称为血脑屏障或血脑障壁,指在血管和脑之间有一种选择性地阻止某些物质由血液进入大脑的“屏障”。19世纪末,保罗·埃尔利希在一个实
  • 仡佬字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 亨利五世《亨利五世》(Henry V)是英国剧作家威廉·莎士比亚创作的一部历史剧,据考证作于1599年。故事基于英格兰亨利五世国王的人生,着重描写百年战争期间阿金库尔战役的前后事件。该剧
  • 道氏理论道氏理论(Dow Theory)是一个关于美国股票市场创造财富方式的活动方式理论。理论起初来源于新闻记者、首位华尔街日报(Wall Street Journal)的记者和道琼斯公司(Dow Jones and Com
  • 金钱肚蜂巢胃,又称网胃,是反刍动物的第二个胃,也叫网胃,内壁有类似蜂巢形状六角形的突起,并有分解食物纤维之细菌。食物会由蜂巢胃挤回口腔咀嚼反刍。经反刍后比较小的食物粒子会进入重
  • 国立台湾科技大学管理学院国立台湾科技大学管理学院(英语:National Taiwan University of Science and Technology School of Management),简称台科管院,是国立台湾科技大学的六所学院之一,近年更通过国际
  • NASCAR全国运动汽车竞赛协会(National Association for Stock Car Auto Racing,缩写:NASCAR,中文名称为纳斯卡赛车)是在美国最大、最受认可的赛车竞速团体。由NASCAR认可三个最大的竞速
  • 约翰·康纳利小约翰·包登·康纳利(英文:John Bowden Connally, Jr,1917年2月27日-1993年6月15日),美国政治人物,曾任美国海军部长、得克萨斯州长和美国财政部长。康纳利原先是民主党人。1963-19
  • Paragonimidae见内文并殖属(学名:Paragonimus)是扁形动物门吸虫纲复殖亚纲斜睾目住胞科的一个属。本属物种多达数十个,而且部分物种之下还有亚种,彼此间要分辨也不容易,而当中有多少属于同种异
  • 凸集在点集拓扑学与欧几里得空间中,凸集(Convex set)是一个点集合,其中每两点之间的直线点都落在该点集合中。在度量几何中,琴生不等式(Jensen's inequality)为凸集给出一个最健全的解