音高集合

✍ dations ◷ 2025-04-04 19:53:49 #记谱法

音高集合(英语:pitch class)是一个集合,其中所有的音高都刚好差整数倍的八度音,举例来说,音高集合C包含了所有八度音中的C。若以科学音高记法表示,则音高集合C如下

其中,C2比C1高八度音,频率为后者两倍,数字每多一,就高一个八度,频率变两倍。虽然n没有正式的范围,但人耳只听得到部分的音高(约20赫兹到20000赫兹),故n大多范围在0到11之间。人耳对音高的感知是对数–线性,且在同一音高集合中的音高,因为频率为倍数关系,彼此有叠加的关系,故听起来非常和谐,有相似的感受,此关系称为“等价八度”,故音高集合的概念非常的重要。

要注意在标准西方音乐标记中,不同的符号可能代表着相同的音高,譬如: B♯3, C4, 和 D双降4 都是相同的,因此也有着一样的色度,被归类在同一种音高集合中。

为了避免相同标记造成的误会,音高集合通常用数字来表示音高集合,以常见的十二平均律为例,一个八度可以平均分成十二个等分,数字由0到11,每个数字都比前个数字高一个半音,不会有12的出现,因为12刚好到达八度音,频率两倍,会算在音高集合第0类。故可直接将MIDI值除以12,余数相同的就会在对应的音高集合中。

根据美国标准协会定义,A4的频率为440赫兹,故低一个八度音的A3频率为A4一半(220赫兹)。A3到A4之间差了一个八度音程,由十二平均率可平分为12等份的半音,r为每个半音所差的频率倍数,B比A高了两个半音,C比A高了三个半音,可依此计算各个音符的频率。 r = 2 12 {\displaystyle r={\sqrt{2}}}

F r e q B 4 = 440 × r 2 = 440 × 2 2 12 493.88 H z {\displaystyle Freq_{B_{4}}=440\times r^{2}=440\times 2^{\frac {2}{12}}\approx 493.88Hz}

F r e q C 4 = 440 × r 3 = 440 × 2 3 12 523.25 H z {\displaystyle Freq_{C_{4}}=440\times r^{3}=440\times 2^{\frac {3}{12}}\approx 523.25Hz}

MIDI 值用0~127的实数来代表C-2到G8的音高,若高一个半音,则数字多一,A4的MIDI值为69,B4的MIDI值为71,C4的MIDI值为72以此类推。若想计算每个音高的MIDI值和频率,可用以下方程式计算,f 是基频(单位为赫兹),p是MIDI值:

p = 69 + 12 log 2 ( f / 440 ) {\displaystyle p=69+12\log _{2}({f/440})}

故可将MIDI值直接除以12,即可得到对应音高集合,我们也可用符号取代整数标记法。

0 C {\displaystyle 0\equiv C}

1 C # / D b {\displaystyle 1\equiv C\#/Db}

2 D {\displaystyle 2\equiv D}

但有时10,11分别会用"t","e"表示,或是"A","B"表示。

音高集合与色度可应用在复音(和弦)的特征抽取,复音代表着同时有两个以上的音,彼此可能有不同的音频,故有多个音高集合所构成,且可转换成色度用向量去纪录各个音高集合的比重,如果以最常见的十二平均律为例,可以用一个十二维的向量来代表色度,第一维代表着音高集合C的比重,第二维代表着音高集合C#的比重,第三维代表着音高集合D的比重,以此类推,则C大三和弦,以色度表示,第一维(C)、第五维(E)、第九维(G)的值会特别大,但是其他九维的值也不会等于零,因为弦乐器有除了基本音频外,还有第一泛音、第二泛音、第三泛音等等,且和弦为复音,彼此的泛音又会共鸣,造成许多组成音以外的音。若可取出大量和弦音讯的十二维色度特征,即可透过机器学习的方法,由电脑自动判断新音讯之合弦。但此特征抽取的方法有个小缺陷,因为色度无法分辨音高来自哪个八度音,故无法分辨出二度音和九度音,故会造成有些特殊和弦无法区别,比如说九和弦、十一和弦、十三和弦。

1. Arnold Whittall, The Cambridge Introduction to Serialism (New York: Cambridge University Press, 2008): 276. ISBN 978-0-521-68200-8 (pbk).

2. Don Michael Randel, ed. (2003). "Set theory", The Harvard Dictionary of Music, p.776. Harvard. ISBN 9780674011632.

3. Tymoczko, Dmitri (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, p.30. Oxford Studies in

4. Music Theory. ISBN 9780199714353.

5. Müller, Meinard (2007). Information Retrieval for Music and Motion, p.60. ISBN 9783540740483. "A pitch class is defined to be the set of all pitches that share the same chroma."

6. Whittall (2008), p.273.Robert D. Morris, "Generalizing Rotational Arrays", Journal of Music Theory 32, no. 1 (Spring 1988): 75–132, citation on 83.

1. Purwins, Hendrik (2005). "Profiles of Pitch Classes: Circularity of Relative Pitch and Key—Experiments, Models, Computational Music Analysis, and Perspectives". Ph.D. Thesis. Berlin: Technische Universität Berlin.

2. Rahn, John (1980). Basic Atonal Theory. New York: Longman; London and Toronto: Prentice Hall International. ISBN 0-02-873160-3. Reprinted 1987, New York: Schirmer Books; London: Collier Macmillan.

3. Schuijer, Michiel (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. Eastman Studies in Music 60. Rochester, NY: University of Rochester Press. ISBN 978-1-58046-270-9.

相关

  • 米氏方程米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极
  • 转录调控转录调控(英语:Transcriptional regulation)指通过改变转录速率从而改变基因表达的水准。转录调控可以控制转录何时发生以及产生多少RNA。被RNA聚合酶转录的基因可被至少五种机
  • FAA美国联邦航空管理局(英语:Federal Aviation Administration,缩写:FAA)是美国运输部下属、负责民用航空管理的机构;其管辖范围包括机场的建设与运行、航空交通管制、飞行员及飞机资
  • 和歌山藩纪州藩(日语:紀州藩/きしゅうはん Kishū han */?)是日本江户时代的一个藩,又称为纪伊藩、和歌山藩。位于纪伊国,藩厅是和歌山城(今和歌山县和歌山市)。藩主是纪州德川家,与水户藩
  • 藜芦藜芦(学名:Veratrum nigrum)为百合科藜芦属下的一个种。
  • 西罗曼语支西罗曼语(英语:Western Romance languages)是罗曼语族下属的分类之一,和意大利-达尔马提亚语共同形成了意大利-西罗曼语支。西罗曼语言虽然和意大利-达尔马提亚语,但由于经过了拉
  • 皮奥里亚皮奥里亚 (英语:Peoria)是美国亚利桑那州的一个城市,大部分属马里科帕县,余属亚瓦派县。面积366.9平方公里,2006年人口142,024人。1954年6月7日设市。城名源于伊利诺伊州同名的城
  • 土耳其政变政变成功1960年土耳其政变是土耳其共和国历史上的首次政变。这次政变由38位土耳其军队的年轻军官在总参谋部的指挥序列之外发动。政变策划者为阿尔帕尔斯兰·蒂尔凯什。1960
  • 营口县营口市是中华人民共和国辽宁省下辖的地级市,位于辽宁省中南部,地处渤海之滨,辽东湾畔,地理坐标为东经121°56′—123°02′,北纬39°55′—40°56′。为中国八大水系之一的辽河入
  • 阿比林基督大学阿比林基督大学(英语:Abilene Christian University)为一所本部坐落于德克萨斯州阿比林的私立基督教大学。阿比林基督大学由AB Barret和Charles Roberson提出的构想成长为在德