音高集合

✍ dations ◷ 2025-11-29 13:23:25 #记谱法

音高集合(英语:pitch class)是一个集合,其中所有的音高都刚好差整数倍的八度音,举例来说,音高集合C包含了所有八度音中的C。若以科学音高记法表示,则音高集合C如下

其中,C2比C1高八度音,频率为后者两倍,数字每多一,就高一个八度,频率变两倍。虽然n没有正式的范围,但人耳只听得到部分的音高(约20赫兹到20000赫兹),故n大多范围在0到11之间。人耳对音高的感知是对数–线性,且在同一音高集合中的音高,因为频率为倍数关系,彼此有叠加的关系,故听起来非常和谐,有相似的感受,此关系称为“等价八度”,故音高集合的概念非常的重要。

要注意在标准西方音乐标记中,不同的符号可能代表着相同的音高,譬如: B♯3, C4, 和 D双降4 都是相同的,因此也有着一样的色度,被归类在同一种音高集合中。

为了避免相同标记造成的误会,音高集合通常用数字来表示音高集合,以常见的十二平均律为例,一个八度可以平均分成十二个等分,数字由0到11,每个数字都比前个数字高一个半音,不会有12的出现,因为12刚好到达八度音,频率两倍,会算在音高集合第0类。故可直接将MIDI值除以12,余数相同的就会在对应的音高集合中。

根据美国标准协会定义,A4的频率为440赫兹,故低一个八度音的A3频率为A4一半(220赫兹)。A3到A4之间差了一个八度音程,由十二平均率可平分为12等份的半音,r为每个半音所差的频率倍数,B比A高了两个半音,C比A高了三个半音,可依此计算各个音符的频率。 r = 2 12 {\displaystyle r={\sqrt{2}}}

F r e q B 4 = 440 × r 2 = 440 × 2 2 12 493.88 H z {\displaystyle Freq_{B_{4}}=440\times r^{2}=440\times 2^{\frac {2}{12}}\approx 493.88Hz}

F r e q C 4 = 440 × r 3 = 440 × 2 3 12 523.25 H z {\displaystyle Freq_{C_{4}}=440\times r^{3}=440\times 2^{\frac {3}{12}}\approx 523.25Hz}

MIDI 值用0~127的实数来代表C-2到G8的音高,若高一个半音,则数字多一,A4的MIDI值为69,B4的MIDI值为71,C4的MIDI值为72以此类推。若想计算每个音高的MIDI值和频率,可用以下方程式计算,f 是基频(单位为赫兹),p是MIDI值:

p = 69 + 12 log 2 ( f / 440 ) {\displaystyle p=69+12\log _{2}({f/440})}

故可将MIDI值直接除以12,即可得到对应音高集合,我们也可用符号取代整数标记法。

0 C {\displaystyle 0\equiv C}

1 C # / D b {\displaystyle 1\equiv C\#/Db}

2 D {\displaystyle 2\equiv D}

但有时10,11分别会用"t","e"表示,或是"A","B"表示。

音高集合与色度可应用在复音(和弦)的特征抽取,复音代表着同时有两个以上的音,彼此可能有不同的音频,故有多个音高集合所构成,且可转换成色度用向量去纪录各个音高集合的比重,如果以最常见的十二平均律为例,可以用一个十二维的向量来代表色度,第一维代表着音高集合C的比重,第二维代表着音高集合C#的比重,第三维代表着音高集合D的比重,以此类推,则C大三和弦,以色度表示,第一维(C)、第五维(E)、第九维(G)的值会特别大,但是其他九维的值也不会等于零,因为弦乐器有除了基本音频外,还有第一泛音、第二泛音、第三泛音等等,且和弦为复音,彼此的泛音又会共鸣,造成许多组成音以外的音。若可取出大量和弦音讯的十二维色度特征,即可透过机器学习的方法,由电脑自动判断新音讯之合弦。但此特征抽取的方法有个小缺陷,因为色度无法分辨音高来自哪个八度音,故无法分辨出二度音和九度音,故会造成有些特殊和弦无法区别,比如说九和弦、十一和弦、十三和弦。

1. Arnold Whittall, The Cambridge Introduction to Serialism (New York: Cambridge University Press, 2008): 276. ISBN 978-0-521-68200-8 (pbk).

2. Don Michael Randel, ed. (2003). "Set theory", The Harvard Dictionary of Music, p.776. Harvard. ISBN 9780674011632.

3. Tymoczko, Dmitri (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, p.30. Oxford Studies in

4. Music Theory. ISBN 9780199714353.

5. Müller, Meinard (2007). Information Retrieval for Music and Motion, p.60. ISBN 9783540740483. "A pitch class is defined to be the set of all pitches that share the same chroma."

6. Whittall (2008), p.273.Robert D. Morris, "Generalizing Rotational Arrays", Journal of Music Theory 32, no. 1 (Spring 1988): 75–132, citation on 83.

1. Purwins, Hendrik (2005). "Profiles of Pitch Classes: Circularity of Relative Pitch and Key—Experiments, Models, Computational Music Analysis, and Perspectives". Ph.D. Thesis. Berlin: Technische Universität Berlin.

2. Rahn, John (1980). Basic Atonal Theory. New York: Longman; London and Toronto: Prentice Hall International. ISBN 0-02-873160-3. Reprinted 1987, New York: Schirmer Books; London: Collier Macmillan.

3. Schuijer, Michiel (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. Eastman Studies in Music 60. Rochester, NY: University of Rochester Press. ISBN 978-1-58046-270-9.

相关

  • 烟酸维生素 B3,维生素 PP烟酸(英语:niacin、nicotinic acid,也称维他命B3、维他命PP、吡啶-3羧酸),分子式:C6H5NO2,耐热,能升华。首次描述于Hugo Weidel于1873年对尼古丁的研究。它是人体
  • 巴拿马运河区巴拿马运河区(英语:Panama Canal Zone,西班牙语:Zona del Canal de Panamá),是1903年至1979年期间,美国位于巴拿马运河的租借地。运河区包括巴拿马运河本身,以及除巴拿马城与科隆外
  • 太阳内部结构标准太阳模型(英语:Standard Solar Model,SSM)是借助于数学模型处理的球形气体太阳(在不同状态的电离,在内部深层的氢被完全电离成为等离子体)。这个模型从技术上说是球对称的一颗
  • 多伦会盟多伦诺尔会盟是指清朝康熙帝为调解喀尔喀蒙古各部之间的矛盾,加强北方边防及对喀尔喀蒙古的管理,于康熙三十年(1691年)在多伦诺尔(今多伦县)与蒙古各部贵族进行的会盟,会盟标志着喀
  • 管理学院商学院(英语:business school)是一种能授予工商管理学位的高等教育学校,现时也有使用管理学院名称的学校。所属学科一般有:会计、统计、国际贸易、财政、税务、财务、银行、金融
  • World Intellectual Property Organization世界知识产权组织(英语:World Intellectual Property Organization,简称WIPO)是联合国的15个专门机构之一,致力于促进使用和保护人类智能作品的国际组织。总部设在瑞士日内瓦,负责
  • 尤勇尤勇智(1963年12月13日-),原名尤勇,陕西西安人,中国大陆演员。代表作包括《射雕英雄传》的欧阳锋、《赤壁》中的刘备等。1979年入读西安话剧院,1984年考入上海戏剧学院表演系,参演的
  • 托潘加托潘加(Topanga)是美国加利福尼亚州的一个人口普查指定地区,位于洛杉矶郡西部圣莫尼卡山脉。2010年人口普查时,托潘加有人口8,289人。
  • 温县盟书温县盟书是1980年至1982年在河南温县发现的一批盟书。1979年3月12日,河南温县武德镇西张计大队社员掘出一坑圭形石片。河南省文物研究所于1980年3月至1982年6月在河南温县武
  • 十复合正四面体在几何学中,十复合正四面体(英语:Compound of ten tetrahedra,又称为Tetrahedron 10-Compound),是一种凹多面体,属于星形多面体,外观看起来像很多正四面体骨架卡在一起。不同于五复