首页 >
量子
✍ dations ◷ 2025-06-06 15:23:30 #量子
量子光学(英语:Quantum optics)是物理学在1990年后成熟的新兴分支,是原子分子与光物理的一部分,也和冷原子物理紧密相连。与凝态物理、粒子物理学、宇宙学等其他成熟分支相比,在精密的实验和理论上,有着紧密、具建设性的互动。量子光学以半经典物理学及量子力学来研究“光的现象”以及“光和物质在亚微观尺度下的相互作用”。在1960年代因为汉伯里·布朗及特维斯效应刺激而发展出理论基础,讨论不同程度的相量子相干性,如
g
(
2
)
{displaystyle g^{(2)}}
为零是典型的单光子源判准主要研究光子和原子的量子相互作用,研究工具为激光及离子井。光在真空传递的能量及动量为量子化的,量子化对应着光子的粒子数,量子光学也就是研究量子化的光子本性和影响的学科,首先的重要发展在1899年,普朗克假设光的能量是以离散单位来发射,该假设正确描述了黑体辐射。随后在1905年,爱因斯坦解释光电效应的论文更进一步为量子化带来证据,因此爱因斯坦荣获了1921年的诺贝尔奖。尼尔斯·玻尔指出光辐射的量子化假设与他的原子量子化能级理论相符,特别是氢的发射光谱。这些发展为光与物质之间的相互作用带来的理解,对于整体量子力学的发展至关重要。然而,这项用于处理“物质-光相互作用”的量子力学子领域,主要被认为是对物质的研究而不是对光的研究; 因此在1960人们称其为“原子物理学”和“量子电子学”。对这些装置的原理、设计、应用的研究使激光科学成为一个重要的领域,当今研究激光原理的量子力学,更加强调光的性质,因此人们也习惯了称其为“量子光学”。由于激光科学需要良好的理论基础,加上基础的研究成果丰硕,人们对量子光学的兴趣也随之上升。继狄拉克在量子场论领域的工作之后,在1950年代和1960年代,George Sudarshan、Roy J. Glauber和Leonard Mandel将量子理论应用于电磁场,更详细理解了光探测和光统计(参见相干度(degree of coherence))。这引入相干态的概念来解决激光、热光、奇异压缩态等之间的变化问题,因为人们已经认识到光不仅仅为经典图像中描述波的电磁场。1977年,Kimble等人展示了一次发射单光子的单原子,进一步地证明了光是由光子组成的。随后发现了特征与经典状态不同的未知光量子态,例如压缩光。透过Q开关和锁模技术开发了短脉冲和超短冲激光脉冲,其发展开启了超快过程的研究。量子光学发现了固态方面的应用(例如拉曼光谱),也研究了光作用在物质上的机械力。后者可透过激光束对光学陷阱或光镊中的原子云或甚至微小的生物样品悬浮和定位。这个技术与多普勒冷却同为实现著名的玻色 - 爱因斯坦凝聚的关键。其他显著的成果有量子纠缠、量子隐形传态和量子逻辑门。量子信息理论部分来自量子光学,部分来自理论计算机科学,量子信息领域对量子逻辑门非常感兴趣。今天量子光学研究人员感兴趣的领域包括参量下转换,参数振荡,甚至更短(阿秒)光脉冲,量子光学在量子信息的使用,单原子的操纵,玻色 - 爱因斯坦凝聚,它们的应用,以及如何操纵它们(一个通常称为原子光学的子场),相干的完美吸收器(Coherent perfect absorber)等等。量子光学术语下分类的主题中,现代术语“光子学”通常是指应用于工程和技术创新的学科。多项诺贝尔奖授予了量子光学方面的工作。被授予者如下:2012年,Serge Haroche和David J. Wineland“开创了能够测量和操纵单个量子系统的突破性实验方法”。2005年,TheodorW.Hänsch,Roy J. Glauber和John L. Hall2001年,Wolfgang Ketterle,Eric Allin Cornell和Carl Wieman1997年,Steven Chu,Claude Cohen-Tannoudji和William Daniel Phillips根据量子理论,光不仅仅只被视为电磁波,也可以被看作在真空中以光速c行进的粒子流,称为光子。这些粒子不该当作经典的台球,而是量子力学中在有限范围内以波函数描述的粒子。每个光子携带一量子的能量,其值为hf,h为普朗克常数,f为光的频率。当原子发射出光子,光子的能量对应于内部离散能级的跃迁,物质吸收光子则是相反的过程,爱因斯坦对自发辐射的解释也预测受激辐射的存在,受激辐射即激光的原理,而激光的发明则要等到多年后有了居量反转的方法后才得以实现。统计力学是量子光学的观念基础:光以场的创生算符与湮没算符来描述,也就是以量子电动力学的语言来描述。光场最常用到的态是1960由E.C. George Sudarshan 引入的相干态,这种状态可以用来近似描述高于激光阈值的单频激光器的输出,表现出泊松光子数统计,通过某些非线性相互作用,应用具超泊松光子统计或亚泊松光子统计的压缩算符,可以将相干态转换为压缩相干态。这种光被称为压缩光。其他重要的量子观点,与不同光束之间的光子统计相关。例如,自发参量下转换可以产生所谓的“双光束”(twin beam),理想情况下,一个光束的每个光子与另一个光束中的一个光子相关联。原子被认为是具有离散能谱的量子力学振荡器,根据爱因斯坦的理论,能量本征态之间的跃迁由光的吸收或发射驱动。对于固态物质,人们使用固态物理的能带模型。这对理解实验中常用的固态元件如何侦测光是很重要的量子电子学是一个术语,主要用于20世纪50年代到70年代之间,用来表示处理量子力学对物质中电子行为的影响的物理领域,以及它们与光子的相互作用。现在很被其他领域所吸收,很少被视为一个子领域,。固体物理学经常考虑量子力学,并且通常与电子有关。半导体物理即量子力学在电子学中的具体应用。该术语还包括激光操作的基本过程,现在作为量子光学的一个主题进行研究。 这个术语的使用涵盖了量子霍尔效应和量子细胞自动机的早期工作。近三十年来重要的量子光学实验包括:
相关
- 霍乱霍乱(Cholera)是由霍乱弧菌的某些致病株感染小肠而导致的急性腹泻疾病。症状可能相当轻微,也可能相当严重。典型症状为连续数日严重水泻。可能合并有呕吐、肌肉抽搐的现象 。霍
- X射线晶体学X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得关于原子位置和
- 嘌呤类似物嘌呤类似物(英语:Purine analogues)是一类与嘌呤结构相似的抗代谢物。主要的嘌呤类似物包括硫唑嘌呤、巯基嘌呤与硫鸟嘌呤等。嘌呤巯基嘌呤硫鸟嘌呤氟达拉滨卤化/核糖核苷酸还
- 八角八角(学名:Illicium verum),又称八角茴香、大料和大茴香(在某些地方,大茴香指的不是八角),是木兰藤目八角属的一种植物。其同名的干燥果实是中国菜和东南亚地区烹饪的调味料之一。树
- 平流层平流层(英语:Stratosphere),旧称同温层,位于对流层的上方和中间层的下方。其下界在中纬度地区位于距离地表10km处,在极地则在8km左右,其上界则约在离地50km的高度。平流层的温度上
- 古希腊文古希腊语(古希腊语:Ἑλληνικὴ γλῶττα) 指代公元前9世纪至公元6世纪所有以口头及书面为载体的古希腊语族的方言,时间上包括公元前9世纪至公元前6世纪的古风时期,公元
- 全身症状人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学症状(英语:symptom)又称病状,医学术语,在疾
- CD8sup+/supCD8受体(英语:CD8-receptor)是细胞毒性T细胞的膜上标记(surface marker)之一。当病菌入侵人体,有一部分必定会被广布的抗原呈现细胞(此时主要指非B细胞的巨噬细胞及棘状细胞)给吞噬,
- 阴茎摩擦阴茎摩擦,源于拉丁文“frot”,中文俗称磨枪或格剑。指两位或以上的男性或女雄,藉他(她)们的阴茎互相磨擦,以取得性快感的行为。是一种非插入式性行为。摩擦亦可在其他身体部位进行
- 蜡疗蜡疗,属于物理治疗中热疗的一种。主要用于于治疗慢性关节炎,神经病变等。原理为使用石蜡包覆患部,传导热能以进行热疗。蜡疗在中国医学中已行之有年,《本草纲目/虫部》中记载:“