参数方程

✍ dations ◷ 2025-05-02 16:39:01 #多变量微积分,方程

参数方程(英语:parametric equation)和函数相似,都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

{ x = f ( t ) y = g ( t ) {\displaystyle {\begin{cases}x=f(t)\\y=g(t)\end{cases}}}

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

x = a cos ( t ) , y = a sin ( t ) {\displaystyle x=a\cos(t),y=a\sin(t)} ,表示了平面上半径为 a {\displaystyle a} 、以原点为圆心的圆。在三维,加入 z = b t {\displaystyle z=bt} ,便是螺旋的图形。这些式子可以表示成:

如果有一个粒子,沿这个螺旋的路径而行,直接微分上面的式子便会得到粒子的速度:

及加速度:

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:


参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解,如圆的渐开线的普通方程。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

直线:

( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} ,斜率为 m {\displaystyle m} 的直线: { x = x 0 + t y = y 0 + m t {\displaystyle {\begin{cases}x=x_{0}+t\\y=y_{0}+mt\end{cases}}}

( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} , 方向向量为 ( u , v ) {\displaystyle (u,v)} 的直线: { x = x 0 + u t y = y 0 + v t {\displaystyle {\begin{cases}x=x_{0}+ut\\y=y_{0}+vt\end{cases}}}

圆: { x = r cos t y = r sin t {\displaystyle {\begin{cases}x=r\cos t\\y=r\sin t\end{cases}}}

椭圆: { x = a cos t y = b sin t {\displaystyle {\begin{cases}x=a\cos t\\y=b\sin t\end{cases}}}

双曲线: { x = a sec t y = b tan t {\displaystyle {\begin{cases}x=a\sec t\\y=b\tan t\end{cases}}}

抛物线: { x = 2 c t y = t 2 {\displaystyle {\begin{cases}x=2ct\\y=t^{2}\end{cases}}}

螺线: { x = t cos l t y = t sin l t {\displaystyle {\begin{cases}x=t\cos lt\\y=t\sin lt\end{cases}}}

摆线: { x = r ( t sin t ) y = r ( 1 cos t ) {\displaystyle {\begin{cases}x=r\cdot \left(t-\sin t\right)\\y=r\cdot \left(1-\cos t\right)\end{cases}}}

注:上文中的 a , b , c , h , k , l , m , p , r , x 0 , y 0 , u , v {\displaystyle a,b,c,h,k,l,m,p,r,x_{0},y_{0},u,v} 为已知数,t都为参数, x, y为变量


相关

  • 抗生素耐药性抗生素抗药性(antibiotic resistance)是抗药性的一种形式,借此特性,一些微生物亚群体,通常是细菌种,能够在暴露于一或多种抗生素之下得以生存;对多种抗生素具抗药性的病原体被视为
  • 世界上游览人数最多的艺术博物馆本表列出英国《艺术报》于2014年3月25日发布的2013年度世界参观人数最多的艺术博物馆(包括任何形式展出艺术品的博物馆)。名单中的100家博物馆共接待169,968,789人次参观,其中
  • 国道印度国道所有权归属于印度公路运输与公路部门,它由印度国道管理局(NHAI)、国家公路和基础设施开发公司(NHIDCL)以及州政府的公共工程部门(PWD)建造和管理,印度国家公路管理局由印度
  • 相位相位(英文:phase),是描述信号波形变化的度量,通常以度(角度)作为单位,也称作相角或相。当信号波形以周期的方式变化,波形循环一周即为360º。常应用在科学领域,如数学、物理学、电学等
  • 库班库班州(俄语:Кубанская область)是俄罗斯帝国的一个州,隶属高加索总督区。其范围即今克拉斯诺达尔边疆区和阿迪格共和国。1860年设立,1896年黑海省自其分出,1918
  • 达维什德尔维希国(索马里语:Dawlada Daraawiish,阿拉伯语:دولة الدراويش‎),是19世纪末由索马里人伊斯兰主义者穆罕默德·阿卜杜拉·哈桑在索马里成立的逊尼派伊斯兰教国家,
  • 巴基斯坦穆斯林联盟(谢里夫派)巴基斯坦政府与政治 系列条目宪法巴基斯坦穆斯林联盟(乌尔都语:(پاکستان مسلم لیگ (ن‎‎)是巴基斯坦中间偏右政党,总部位于伊斯兰堡,现任领导人为纳瓦兹·谢里夫
  • 太田早纪太田早纪(1月31日-),日本漫画家,血型B型,出生于日本山口县。目前休业中。
  • 雷丽·里德雷丽·里德(英语:Riley Reid,1991年7月9日-),美国色情片女演员。出生于佛罗里达迈阿密海滩,就读于佛罗里达国际大学。她曾担任过脱衣舞娘,在2011年起开始拍摄成人片,并因此获得了多个
  • 葛拉兹亚迪奥商学院葛拉兹亚迪奥商学院(英语:Graziadio Business School),是佩珀代因大学的研究生商科项目。拥有超过14万4千位校友,是南加州最大的商学院之一,也被国际商管学院促进协会(AACSB)认可。