参数方程

✍ dations ◷ 2025-06-08 17:40:04 #多变量微积分,方程

参数方程(英语:parametric equation)和函数相似,都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

{ x = f ( t ) y = g ( t ) {\displaystyle {\begin{cases}x=f(t)\\y=g(t)\end{cases}}}

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

x = a cos ( t ) , y = a sin ( t ) {\displaystyle x=a\cos(t),y=a\sin(t)} ,表示了平面上半径为 a {\displaystyle a} 、以原点为圆心的圆。在三维,加入 z = b t {\displaystyle z=bt} ,便是螺旋的图形。这些式子可以表示成:

如果有一个粒子,沿这个螺旋的路径而行,直接微分上面的式子便会得到粒子的速度:

及加速度:

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:


参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解,如圆的渐开线的普通方程。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

直线:

( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} ,斜率为 m {\displaystyle m} 的直线: { x = x 0 + t y = y 0 + m t {\displaystyle {\begin{cases}x=x_{0}+t\\y=y_{0}+mt\end{cases}}}

( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} , 方向向量为 ( u , v ) {\displaystyle (u,v)} 的直线: { x = x 0 + u t y = y 0 + v t {\displaystyle {\begin{cases}x=x_{0}+ut\\y=y_{0}+vt\end{cases}}}

圆: { x = r cos t y = r sin t {\displaystyle {\begin{cases}x=r\cos t\\y=r\sin t\end{cases}}}

椭圆: { x = a cos t y = b sin t {\displaystyle {\begin{cases}x=a\cos t\\y=b\sin t\end{cases}}}

双曲线: { x = a sec t y = b tan t {\displaystyle {\begin{cases}x=a\sec t\\y=b\tan t\end{cases}}}

抛物线: { x = 2 c t y = t 2 {\displaystyle {\begin{cases}x=2ct\\y=t^{2}\end{cases}}}

螺线: { x = t cos l t y = t sin l t {\displaystyle {\begin{cases}x=t\cos lt\\y=t\sin lt\end{cases}}}

摆线: { x = r ( t sin t ) y = r ( 1 cos t ) {\displaystyle {\begin{cases}x=r\cdot \left(t-\sin t\right)\\y=r\cdot \left(1-\cos t\right)\end{cases}}}

注:上文中的 a , b , c , h , k , l , m , p , r , x 0 , y 0 , u , v {\displaystyle a,b,c,h,k,l,m,p,r,x_{0},y_{0},u,v} 为已知数,t都为参数, x, y为变量


相关

  • 醉虾醉虾,是一种用虾制作的中国菜肴。这道菜不同地方做法不同,一般是把虾浸渍于酒中,一些地方是生吃,一些则是煮熟后食用。由于活的淡水虾可能有肺吸虫寄生,可能对食用者是一个严重的
  • 蛇形冷凝管蛇形冷凝管是实验室中常用在蒸馏、分馏与回流过程中,与直型冷凝管用途相似。将热气态分子借由与冷水管面接触使其温度降至沸点以下,凝结成为液态。再顺势延著内管向下流出,并加
  • 泛植物原始色素体生物(Archaeplastida)即泛植物,是真核生物的主要群体。包括红藻、绿藻、陆生植物(有胚植物狭义植物)及少量合称为灰胞藻的生物。除了狭义植物以外,这个组的其他生物只具
  • 黑格艾伦·杰伊·黑格(英语:Alan Jay Heeger,1936年1月22日-),美国物理学家、化学家,诺贝尔化学奖获得者。黑格出生于衣阿华州苏城。1957年在内布拉斯加大学林肯分校获得物理及数学学士
  • 阿尔布雷赫特·冯·华伦斯坦阿尔布雷希特·文策尔·优西比乌斯·冯·华伦斯坦(德语:Albrecht Wenzel Eusebius von Wallenstein,捷克语:Albrecht Václav Eusebius z Valdštejna,1583年9月24日-1634年2月25
  • 生产力生产力(英语:productive forces,德语:Produktivkraft)是人对自然的关系,是改造自然和影响自然并使之适应社会需要的客观物质力量。是历史唯物主义的核心概念。通常认为,生产力有三
  • 下酒菜 (안주)下酒小吃又称佐酒小吃,一般指喝酒时食用的小菜或小吃,古称酒肴、肴(保留在现代日语)、按酒(保留在现代韩语)。熟食则可称为下酒菜之意。一般用来调节喝酒时的口感,很少当主食作裹腹
  • 那坡县那坡县位于广西西部。东界靖西市,北和西与云南省富宁县接壤。南和西南与越南为界。目前是中国广西壮族自治区百色市所辖的一个县。总面积为2230平方千米,2002年人口为19万。那
  • 东海水道东海水道,位于中华人民共和国广东省佛山市顺德区西南部的一条河涌,是西江干流入海水道的一条分汊,西起杏坛镇南华村,东南流5.2千米处被江中海心沙和南沙围将水道一分为二,至莺哥
  • 池万元池万元(韩语:지만원,1942年11月20日-)大韩民国工程师、教育家、政治人物、反共主义者、韩国陆军退役上校。江原道横城郡人。池万元、赵甲济等人是金大中、卢武铉政权时韩国的反政