球面三角学

✍ dations ◷ 2025-07-26 22:49:38 #球面几何学,三角学

球面三角学是球面几何学的一部分,主要在处理、发现和解释多边形 (特别是三角形) 在球面上的角与边的联系和关联。在天文学上的重要性是用于计算天体轨道和地球表面与太空航行时的天文导航。

在球壳的表面,最短的距离是大圆上接近直线的弧线,也就是圆弧的圆心与球壳的球心是同一点。例如:地球上的子午线和赤道都是大圆。所谓行星表面的直线,就是球面上两点之间最近距离的大圆弧线(如果把自己拘束在球面上的直线上)。

在球面上,由大圆的弧所包围的区域称为球面多边形,但要注意,不同于平面上的情形,在球面上二角形是可能存在的。(两个弧夹出两个角的三角形类似物)

这些多边形的边长(弧长),可以利用球心角很方便的来测定,将弧的两端所对应的球心角乘上半径便是边长。要注意的是,这些角都必须用弪度量来量度。.

因此,对一个球面三角形而言,是由他的弧长与球心角来具体描述的,只是弧的长度是用弪度量来标示。

值得注意的是,球面三角形的三个内角的和总是大于180°,但在平面上只有180°。超过180°的数值称为球面剩余 E:E = α + β + γ - 180°,这些结余给出了球面三角形的面积。确定这个值,球面剩余必须以弪度量来测定,表面积A依据球面的半径和球面剩余来测量:

这是高斯-博内定理,这很明显的显示没有相似的球面三角形(三角形有相同的角,但邊長和面積不同)。而在特殊的情况下,球的半径为1,则球面三角形的面积A = E。

要解球面几何的问题,要点是能剖析出其中的(三个角中有一个是90°),因为这样就可以利用纳皮尔的多边形求解。

利用纳皮尔多边形(也称为纳皮尔圆周)的口诀可以很轻易的记住球面直角三角形的所有关联性: 以他们出现于球面三角形的顺序,依照相邻的边角关系,依序将三角形的六个角写在一个圈子内,也就是开始以一个角度开始,然后在它旁边写上相邻的边的弧角度,继续再写下下一个角度,···,最后结束成一个圆。然后删除90°的角角度并且将它相邻的弧角度替换成他们补角的数值(与原角弧度之和为90°) (也就是将 换成 90° − )。 现在,这五个数组成了我们需要的纳皮尔多边形(纳皮尔圆周),从这儿,可以得到每个角度的余弦值等于:

可以参考半正矢(Haversine formula),能在球面三角上解析弧长与角度,为航海学提供了稳定的模式。

余弦定理是球面三角学的基本恒等式,球面三角学中的其他恒等式都可以由余弦定理导出。

当三角形的边长远小于球面半径时,该公式与平面三角的余弦定理近似相等。

球面上的正弦定理可表示为:

当三角形的边长远小于球面半径时,该公式与平面三角的正弦定理近似相等。

更详尽的公式列表可以点选:此处

相关

  • 肌肉骨骼系统人体肌肉骨骼系统或肌肉骨骼系统,简称肌骨系统(英语:Human musculoskeletal system,也作locomotor system,曾称activity system)是一种器官系统,通过为人体提供结构、支撑、稳定、
  • 玫瑰战争玫瑰战争(又称蔷薇战争;英语:Wars of the Roses;1455年─1485年)是英王爱德华三世(1327年-1377年在位)的两支后裔——兰开斯特家族和约克家族的支持者为了争夺英格兰王位而发生断续
  • 木卫一木卫一也称为“艾奥”或“伊俄”(发音为/ˈaɪ.oʊ/, 或是希腊 Ἰώ),是木星的四颗伽利略卫星中最靠近木星的一颗卫星,直径为3,642公里,是太阳系第四大卫星。名字来自众神之王宙
  • 宇宙膨胀宇宙加速膨胀是宇宙的膨胀速度越来越快的现象。以天文学术语来说,就是宇宙标度因子  a ( t ) {\displays
  • 杜进才杜进才(Toh Chin Chye,1921年12月10日-2012年2月3日),是新加坡国父之一,前副总理、政治元老。出生于马来西亚霹雳州的太平。早年在家乡念书,后来前往新加坡莱佛士学院就读,毕业后进
  • 氙酸盐氙酸盐统称含有氙酸根离子(XeO42-)的盐类。碱金属的氙酸盐固体粉末可以通过将三氧化氙溶液与碱金属氢氧化物严格按等比混合,再经冷冻和干燥而制得。氙酸钠(NaHXeO4·1.5H2O)和氙
  • 王 松王松可以指:
  • 斯洛伐克裔斯洛伐克人(斯洛伐克语: Slováci )是西斯拉夫人的一支。主要聚居于欧洲中部的斯洛伐克共和国。通用斯洛伐克语。多信奉罗马天主教。斯洛伐克人是斯洛伐克的主体民族,另外在斯
  • 墨西哥狼墨西哥狼(Canis lupus baileyi)是狼的最为稀少及遗传上较疏离的亚种,分布在北美洲。墨西哥狼是狼最细小的亚种,最长只有1.2-1.5米,最高0.8米。重约27-37公斤。墨西哥狼主要猎食野
  • F·W·穆尔瑙F·W·穆尔瑙(德语:Friedrich Wilhelm Murnau、1888年12月28日-1931年3月11日)是默片时代最有影响力的导演之一,出生于德国,后来前往好莱坞发展。1888年生于德意志帝国比勒费尔德,