首页 >
波兹曼分布
✍ dations ◷ 2025-04-02 14:22:42 #波兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F
(
s
t
a
t
e
)
∝
e
−
E
k
T
{displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中
E
{displaystyle E}
是量子态能量(随着个别量子态有所不同),
k
T
{displaystyle kT}
(对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为
p
i
=
e
−
ε
i
/
k
T
∑
j
=
1
M
e
−
ε
j
/
k
T
{displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中
p
i
{displaystyle p_{i}}
是量子态i的概率,
ε
i
{displaystyle varepsilon _{i}}
是量子态i的能量,
k
{displaystyle k}
是玻尔兹曼常数,
T
{displaystyle T}
是系统温度且
M
{displaystyle M}
为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F
(
s
t
a
t
e
2
)
F
(
s
t
a
t
e
1
)
=
e
E
1
−
E
2
k
T
{displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中
p
i
{displaystyle p_{i}}
为量子态i的概率,
ϵ
i
{displaystyle epsilon _{i}}
为量子态i之能量,
k
{displaystyle k}
为玻尔兹曼常数,
T
{displaystyle T}
为系统温度,
M
{displaystyle M}
为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中
N
i
{displaystyle N_{i}}
为处于i能级中的粒子数,
N
{displaystyle N}
为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。
相关
- 行书行书,分为行楷及行草,是汉字书法中的一种手写字体风格,相传是在东汉年间刘德升所创。唐朝张怀瓘《书断》对行书的来源有如此看法:“行书即正书(楷书)小伪,务从简易,相间流行,故谓之行
- 阿兹海默氏症阿尔茨海默病(拉丁语:Morbus Alzheimer、德语:Alzheimer-Krankheit、英语:Alzheimer's disease,缩写:AD),俗称早老性痴呆、老年痴呆,是一种发病进程缓慢、随着时间不断恶化的神经退化
- 普里什蒂纳普里什蒂纳(阿尔巴尼亚语:Prishtina/Prishtinë,塞尔维亚语:Приштина/Priština)是科索沃共和国的首都,位于该国东北部。科索沃独立前属于塞尔维亚共和国,为科索沃自治省的
- 真核转录真核转录是真核生物将存储在DNA中的遗传信息复制到RNA中的复杂过程。转录既发生在真核生物中,也发生在原核生物中。原核生物中的RNA聚合酶可以启动所有类型的转录;不同于原核
- 物理学奖诺贝尔物理学奖(瑞典语:Nobelpriset i fysik)是瑞典皇家科学院为表彰在物理学作出最杰出的贡献,自1901年起一年一度颁发的奖项;奖金由诺贝尔基金会发出。奖项是阿尔弗雷德·诺贝
- 引擎name = 'Transport', description = '交通', content = {{ type = 'text', text = [[]] }, { type = 'item', original = 'articulated bus', rule = 'zh-cn:铰接客车;zh-tw
- 黄诗厚黄诗厚(英语:Alice S. Huang,1939年3月22日-),美籍华裔病毒学家,中央研究院院士。1939年出生于中华民国大陆时期的江西省南昌市,1949年赴美,在卫斯理学院读了两年,1966年获约翰·霍普
- 被覆金属电弧焊接手工电弧焊是一种非常常见而基本的焊接技术。它利用电弧放电产生热量的原理,将焊条和被焊接的工件(母材)分别接上电源的两极,当两者之间引燃电弧并保持电弧稳定燃烧时金属便会因
- 米利茨国家公园米利茨国家公园是德国的国家公园,位于该国东北部,由梅克伦堡-前波美拉尼亚负责管辖,始建于1990年10月1日,面积322平方公里,是54种哺乳类动物、214种鸟类和16种爬虫类动物的栖息地
- HyperPhysics website– requires QuickTimeQuickTime是由苹果公司所开发的一种多媒体框架,能够处理许多的数字视频、媒体段落、音效、文字、动画、音乐格式,以及交互式全景影像的数项类型。QuickTime技术拥有三种主要的