波兹曼分布

✍ dations ◷ 2025-11-28 01:15:57 #波兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 头孢克肟头孢克肟(Cefixime)是一种口服的第三代头孢菌素抗生素,通常用于治疗淋病、扁桃腺炎和咽炎。常用剂量为400毫克。头孢克肟在美国以“Suprax”的名称发售,直到2003年,当它的专利失
  • 精神病学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学精神病学目前是一门医学专科,内容是关
  • 肿瘤科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学肿瘤学(英:Oncology)是一种研究肿瘤(尤其
  • 产褥热产褥热(puerperal fever)也称为产后感染(postpartum infections)、产褥感染(Puerperal infections)或产褥期发热,是在分娩、流产或是堕胎后,产道的细菌性感染。其症状一般会包括发烧
  • 光线在太阳引力场中的偏折广义相对论中的开普勒问题,是指在广义相对论的框架下求解存在引力相互作用的两体动力学问题。在典型情况下以及本文中,其中一个物体的质量 m
  • 核糖核酸聚合酶RNA聚合酶(RNA polymerase、RNAP、RNApol、DNA-dependent RNA polymerase,EC2.7.7.6)或称核糖核酸聚合酶,是一种负责从DNA或RNA模板制造RNA的酶。RNA聚合酶是通过称为转录的过程
  • 詹姆斯六世詹姆士一世和六世(英语:James I and James VI,1566年6月19日-1625年3月27日),苏格兰国王,称詹姆士六世(英语:James VI),1567年7月24日到1625年3月27日在位,1603年未婚的英格兰女王伊丽莎
  • 涌泉涌泉位于中国山东省济南市历城区柳埠镇四门塔风景区内,北依白虎山,西侧为涌泉庵遗址,东侧为四门塔,明清时期的《历城县志》称其“在神通寺西,瀑布飞悬,流入锦阳川”。该泉为清代郝
  • 加拿大银行加拿大银行(英语:Bank of Canada)是加拿大的中央银行,其依据1934年的《加拿大银行法案》(英语:Bank of Canada Act)而建立。它自身定位为一家非商业银行,不向公众提供银行服务,而是专
  • 悉尼科技大学悉尼科技大学(简称:UTS、悉科大,英语:University of Technology Sydney),是澳大利亚的公立大学。创立于1988年,位于新南威尔士州之首府悉尼。在校学生超过40000名,下设9大学院,是一