时频分布的变形

✍ dations ◷ 2025-09-14 12:35:11 #信号处理

时频分布的变形(Motions on the time-frequency distribution)是指信号经过时频分析(Time-frequency analysis)的结果,在时频平面(time-frequency plane)上图形的各种变形。

对时频分布做各种变形,皆有其对应的物理意义。常见的时频分布的变形有下列几种:水平平移、铅直平移、扩张、斜推、旋转。时频分布的变形在分离信号、滤波器设计、取样定理、调变及多工…等领域上都有相当的帮助。

简单来说,水平平移就是信号在时间轴上的平移。例如一个在0秒至3秒之间大小为1,其他为0的方波信号,被平移成为10秒至13秒之间大小为1,其他为0的方波。若一个信号x经过水平平移t0时间单位后得到的信号为y,则x与y的时频分布关系为:


铅直平移就是信号在频率轴上的平移,在通讯上也被称为调变。将一个基频的讯号经过调变之后变换到射频来传送,可以更加有效的利用频率资源。若一个信号x经过铅直平移f0频率单位后得到y,则


扩张变形对时频分布图形造成的影响是:在时间轴拉伸a倍,而在频率轴压缩a倍。扩张变形的重要特性是时频分布占有的面积不变。若一个信号x经过a倍的扩张变形,得到的结果为y,则

时频分析的扩张

沿着时间轴方向做斜推变形,造成的影响是:时间轴方向的位移量与频率大小成正比。反之,沿着频率轴方向做斜推变形,则会使频率轴方向的位移量与时间大小成正比。沿时间轴的斜推变形,是信号与chirp函数做折积运算的结果;沿频率轴的斜推变形,是信号与chirp函数相乘的结果。若一个信号x沿着时间轴做a倍的斜推变形后得到的结果为y,则

x ( t ) = y ( t ) e j π t 2 a {\displaystyle x(t)=y(t)e^{j\pi {\frac {t^{2}}{a}}}}

W y ( t , f ) = W x ( t a f , f ) {\displaystyle W_{y}(t,\,f)=W_{x}(t-af,\,f)}

x ( t ) = y ( t ) e j π t 2 a {\displaystyle x(t)=y(t)*e^{j\pi {\frac {t^{2}}{a}}}}

W y ( t , f ) = W x ( t , f a t ) {\displaystyle W_{y}(t,\,f)=W_{x}(t,\,f-at)}

时频分析的斜推

旋转变形顾名思义就是把图形对着原点旋转。对信号做傅里叶变换会将图形顺时针方向旋转90度;同样的,做傅利业反变换会将图形逆时钟旋转90度。而分数傅里叶变换可将图形旋转任意的角度。若一个信号x做傅里叶变换后得到的结果为y,则

y = F { x ( t ) } {\displaystyle y=\displaystyle {\mathcal {F}}\left\{x(t)\right\}}

W y ( t , f ) = W x ( f , t ) {\displaystyle W_{y}(t,\,f)=W_{x}(-f,\,t)}

分數傅立葉轉換 

第一种定义:

第二种定义:

ϕ = 0.5 a π {\displaystyle \phi =0.5a\pi } , a {\displaystyle a} 为实数。

a = 1 {\displaystyle a=1} 时 (亦即 ϕ = 0.5 π {\displaystyle \phi =0.5\pi } ),分数傅里叶变换就成了傅里叶变换。

分数傅里叶转换

当一个讯号的时频分布呈现不规则形状时,会有许多不必要的带宽浪费,此时可以将频率与时间的关系近似于多项式,只要将原讯号乘上原讯号的共轭函数,就可以将时频分布拉直,如同直流讯号或是单频讯号的时频分布,这样除了可以降低传输时的带宽之外,因为在时频分布上的面积缩小所以亦可降低总取样点数。

y ( t ) A e j ϕ ( t ) {\displaystyle y(t)\cong Ae^{-j\phi (t)}}

ϕ ( t ) = k = 0 n a k t k {\displaystyle \phi (t)=\sum _{k=0}^{n}a_{k}t^{k}}

f r e q u e n c y = 1 2 π d ϕ ( t ) d t {\displaystyle frequency={\frac {1}{2\pi }}{\frac {\mathrm {d} \phi (t)}{\mathrm {d} t}}}


x ( t ) = y ( t ) e j ϕ ( t ) {\displaystyle x(t)=y(t)e^{j\phi (t)}}

W x ( t , f ) = W y ( t , f 1 2 π d ϕ ( t ) d t ) {\displaystyle W_{x}(t,\,f)=W_{y}(t,\,f-{\frac {1}{2\pi }}{\frac {\mathrm {d} \phi (t)}{\mathrm {d} t}})}


Generalized shearing

利用线性正则变换可以把时频分布做任意的线性变形

定义

线性正则变换有四个参数(a, b, c, d)和一个限制,也就是有三个自由参数,第四个参数则由另外三个所决定。

矩阵 {\displaystyle {\begin{bmatrix}a&b\\c&d\end{bmatrix}}} 的行列式ad - bc = 1


在这里用 F ( a , b , c , d ) ( u ) {\displaystyle F_{(a,b,c,d)}(u)} 表示 f ( u ) {\displaystyle f(u)} 做线性正则变换的结果, O F ( a , b , c , d ) {\displaystyle O_{F}^{(a,b,c,d)}} 表示做参数为{a,b,c,d}的线性正则变换。

线性正则转换

传统的滤波器设计,是在频域对不同频率给定不同的频率响应,借此压抑或是强化某些频率的能量。因为一般而言被处理的信号都是时变的,在加入时频分析工具以及变形之后,可以对信号做更复杂的处理,得到更好的效果,例如:分数傅里叶变换,可以将讯号时频分布旋转至适当角度让讯号及干扰的cut-off line与水平轴垂直,此时讯号再与干扰会在时间轴上分离只要在时间轴上乘上一个适当的window function,就可以分离讯号及噪声。

水平cutoff line

时频分布所占的面积,相当于一个信号所需要取样的次数。同上原因,对信号的时频分布进行适当地旋转,变形及切割之后,可以使取样点数降低或是让取样方法更简单。

讯号时频分割

讯号时频旋转

在通讯系统中,我们为了有效的利用传输资源,会进行分时多工或是分频多工,把时间或频率切割成小的区块再将讯号载在其中。同样的,若利用时频分布的变形,我们有机会把信号调整成更适合小区块的形状再放入,进而节省通讯资源。

利用时频分析处理讯号多工利用时频分析处理讯号多工

相关

  • Aristotle亚里士多德(希腊语:Αριστοτέλης,Aristotélēs,前384年6月19日-前322年3月7日),古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。他的著作牵涉许多学科,包括了物理学、形
  • 联邦政府行政部门美国联邦行政部门(英语:United States Federal Executive Departments)是对于美国联邦政府中由总统指挥的行政机构总称,目前共有15个联邦行政部门;其中包含历史最为悠久的主要单
  • 休斯休斯县(Hughes County, Oklahoma)是美国奥克拉荷马州东南部的一个县。面积2,110平方公里。根据美国2000年人口普查,共有人口14,154人。县治霍尔登维尔 (Holdenville)。成立于19
  • 安哥拉武装力量安哥拉武装力量(葡萄牙语:Forças Armadas Angolanas)是安哥拉共和国的军事力量,其前身为安哥拉人民解放运动领导的安哥拉人民解放军(英语:Armed Forces for the Liberation of An
  • 阪急百货店阪急百货店是日本一间百货公司。以关西为基地,总店位于大阪市。为阪急阪神百货店的子公司,属于阪急阪神东宝集团旗下的H2O零售集团。
  • 德川纲条德川纲条(1656年10月13日-1718年10月4日),江户时代中期的大名,常陆国水户藩的第三代藩主,水户德川家第三代。父亲是赞岐国高松藩藩主松平赖重(德川赖房长子),母亲是赖重的正室土井利
  • 翼型翼型或称翼剖面,是指机翼、风帆、螺旋桨、直升机旋翼、涡轮的横截面形状。翼型可以改变力的方向,例如可以把平行方向的推力转换为升力,或是将水平方向的旋转力矩转换为垂直方向
  • 可定义数 N ⊆ Z ⊆ Q ⊆ R ⊆
  • 包尔江·玛穆什包尔江·玛穆什(哈萨克语:Бауыржан Момышұлы,;俄罗斯化:,;一些英文翻译文献也拼作Baurjan Momish-Uli;1910年12月24日(儒略历11月11日)–1982年6月10日)是哈萨克裔苏
  • 邱泽邱泽(1981年10月14日-),台湾歌手、演员、赛车手、排球国手。2001年6月12日出道,因不习惯演艺圈文化而淡出。2008年复出;2011年在台湾偶像剧《小资女孩向前冲》饰演秦子奇而走红。2