代数基本定理说明,任何一个一元复系数方程式都至少有一个复数根。也就是说,复数域是代数封闭的。
有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根(重根视为多个根)。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。也就是说,任何一个n次多项式,都可以因式分解为n个复系数一次多项式的乘积。
尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。
高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。
同时,高次代数方程的求解仍然是一大难题。伽罗瓦理论指出,对于一般五次以及五次以上的方程,不存在一般的代数解。
所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。
定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式(),以下的多项式
就是一个实系数多项式,如果是()的根,那么或它的共轭复数就是()的根。
许多非代数证明都用到了“增长引理”:当||足够大时,首系数为1的次多项式函数()的表现如同。一个更确切的表述是:存在某个正实数,使得当|| > 时,就有:
寻找一个中心为原点,半径为的闭圆盘,使得当|| ≥ 时,就有|()| > |(0)|。因此,|()|在内的最小值(一定存在,因为是紧致的),是在的内部的某个点0取得,但不能在边界上取得。于是,根据最小模原理,(0) = 0。也就是说,0是()的一个零点(根)。
由于在之外,有|()| > |(0)|,因此在整个复平面上,|()|的最小值在0取得。如果|(0)| > 0,那么1/在整个复平面上是有界的全纯函数,这是因为对于每一个复数,都有|1/()| ≤ |1/(0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/是常数,因此是常数。于是得出矛盾,所以(0) = 0。
这个证明用到了辐角原理。设为足够大的正实数,使得()的每一个根的绝对值都小于;这个数一定存在,因为次多项式函数最多有个根。对于每一个 > ,考虑以下的数:
其中()是中心为0,半径为的逆时针方向的圆;于是辐角原理表明,这个数是()在中心为0、半径为的开圆盘内的零点的数目,由于 > ,所以它也是()的零点的总数目。另一方面,/沿着()的积分除以2π,等于。但这两个数的差为:
被积分的有理表达式中的分子,次数最多是 − 1,而分母的次数是 + 1。因此,当趋于+∞时,以上的数趋于0。但这个数也等于 − ,因此有 = 。
这个证明结合了线性代数和柯西积分定理。为了证明每一个 > 0次复系数多项式都有一个根,只需证明每一个方块矩阵都有一个复数特征值。证明用到了反证法。
设为大小 > 0的方块矩阵,并设为相同大小的单位矩阵。假设没有特征值。考虑预解函数
它在复平面上是亚纯函数,它的值位于矩阵的向量空间内。的特征值正好是的极点。根据假设,没有特征值,因此函数是整函数,根据柯西积分定理可知:
另一方面,把展开为几何级数,可得:
这个公式在半径为||||的闭圆盘的外部(的算子范数)成立。设 > ||||。那么:
(仅当 = 0时,积分才不等于零)。于是得出矛盾,因此一定有一个特征值。
设0 ∈ C为使|()|在0取得最小值的数; 从用到刘维尔定理的证明中,可以看到这样一个数一定存在。我们可以把()写成 − 0的多项式:存在某个自然数和一些复数、 + 1、…、,使得 ≠ 0,以及:
可推出如果是(()-(0))/的一个重根,且是足够小的正数,那么|(0 + )| < |(0)|,这是不可能的,因为|(0)|是||在内的最小值。
对于另外一个用到反证法的拓扑学证明,假设()没有根。选择一个足够大的正数,使得对于|| = ,()的第一项大于所有其它的项的和;也就是说,|| > | − 1 −1 + ··· + 0|。当依逆时针方向绕过方程为|| = 的圆一次时,(),像那样,依逆时针方向绕过零次。在另外一个极端,|| = 0时,“曲线” ()仅仅是一个(非零的)点(0),它的卷绕数显然是0。如果所经过的回路在这两个极端中被连续变形,那么()的路径也连续变形。我们可以把这个变形记为大于或等于0,而小于或等于1。如果我们把变量视为时间,那么在时间为零时,曲线为,时间为1时,曲线为。显然在每一个点,根据原先的假设都不能是零,因此在变形的过程中,曲线一直都没有经过零。因此曲线关于0的绕数应该不变。然而,由于绕数在一开始是,结束时是0,因此得出矛盾。所以,()至少有一个根。
这个证明需要依赖实数集的如下事实:正实数在。那么存在本原元,再次利用西罗定理,存在一个阶为的子群。这时。这和先前不存在二阶扩张矛盾。因此的任何代数扩张都是本身,代数基本定理得证。
由于代数基本定理可以视为复数域是代数封闭的,可推出任何关于代数封闭域的定理在复数域都是适用的。这个定理有一些推论,要么是关于实数域的,要么是关于实数域与复数域之间的关系的:
韦达公式把多项式的系数与它的根的和与积联系起来。
这可以直接从以下等式的展开式推出: