首页 >
路径积分表述
✍ dations ◷ 2025-04-04 11:16:00 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符
H
{displaystyle H}
是量子力学中的时间演化算符
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
的生成算符:一个量子粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
的量子概率幅是:因为
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
是很复杂的算符函数,直接用以上定义计算
i
G
(
x
b
,
t
b
;
x
a
,
t
a
)
{displaystyle iG(x_{b},t_{b};x_{a},t_{a})}
非常困难。
时间演化算符符合因此量子幅符合此公式的物理理解为:从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
出发,在时刻
t
b
>
t
>
t
a
{displaystyle t_{b}>t>t_{a}}
先穿过位置
x
{displaystyle x}
再到达
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
路径的总量子幅是两段路径量子幅的积;而从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
到
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的量子幅是所有这种路径的和。假设粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
。那可以把之间的时间平均分割成个别的时间区间:
t
a
=
t
0
<
t
1
<
t
2
<
⋯
<
t
n
−
1
<
t
n
=
t
b
{displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}}
。每一段的时间是
Δ
=
t
b
−
t
a
n
{displaystyle Delta ={frac {t_{b}-t_{a}}{n}}}
。
在时刻
t
j
−
1
{displaystyle t_{j-1}}
和
t
j
{displaystyle t_{j}}
间粒子的量子幅是:因为
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
是互不交换的算符,所以必须运用它们的交换子关系:
[
p
^
,
x
^
]
=
i
ℏ
{displaystyle =ihbar }
把
H
(
p
^
,
x
^
)
{displaystyle H({hat {p}},{hat {x}})}
修成所有的
p
^
{displaystyle {hat {p}}}
在
x
^
{displaystyle {hat {x}}}
左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时(
Δ
→
0
{displaystyle Delta rightarrow 0}
),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下,
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
从算符简化成普通复数。
因此把所有连接
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
和
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的路径相加得到的总量子幅是:S
{displaystyle S}
是路径
x
(
t
)
{displaystyle x(t)}
的作用量,拉格朗日量
L
(
t
,
x
,
x
˙
)
{displaystyle L(t,x,{dot {x}})}
的时间积分:自由粒子的作用量(
m
=
1
{displaystyle m=1}
,
ℏ
=
1
{displaystyle hbar =1}
):可以插入路径积分里做直接计算。
暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D
x
{displaystyle {mathcal {D}}x}
是以上时间切成有限片的积分。连乘里每一项都是平均值为
x
(
t
)
{displaystyle x(t)}
方差为c的高斯函数。多重积分是相邻时间高斯函数
G
ϵ
{displaystyle G_{epsilon }}
的卷积:这里面共包含
T
/
ϵ
{displaystyle T/epsilon }
个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的
i
{displaystyle i}
。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片
ϵ
{displaystyle epsilon }
带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何
G
{displaystyle G}
的线性组合也符合薛定谔方程,包括以下定义的波函数:和
G
{displaystyle G}
一样服从薛定谔方程:配分函数成为泛函积分:Z
=
∫
D
ϕ
exp
(
i
S
(
ϕ
)
)
{displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数
相关
- 调理素调理素(英语:Opsonin,来源于希腊语:opsōneîn,意思是准备进食),是通过标记免疫应答抗原或标记死细胞用于再循环来增强吞噬作用的任何分子。调理吞噬作用(也称为调理作用)是一种分子
- 雕塑古希腊雕刻是古希腊中闻名于世的其中一项艺术,发展时间大约于公元前10世纪至公元前1世纪。古希腊雕刻特点在于富于理想主义、质朴,注重共性、雅致,简而言之便是返璞归真,因此在
- 基因拷贝DNA复制是指DNA双链在细胞分裂分裂间期进行的以一个亲代DNA分子为模板合成子代DNA链的过程。复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来
- 亚特兰提斯号亚特兰蒂斯号航天飞机(STS Atlantis OV-104)是美国国家航空航天局(NASA)肯尼迪航天中心(KSC)旗下,第四架实际执行太空飞行任务的航天飞机。它与发现号是姊妹机,属于NASA第二批制造的
- 强力胶水万能胶,又称快干胶、三秒胶、瞬间胶、502胶,所含作为组合剂的成分为氰基丙烯酸酯(Cyanoacrylate)。氰基丙烯酸酯是一系列物质的合称,譬如 2-氰基丙烯酸甲酯(Methyl-2-cyanoacrylat
- 格罗宁根大学格罗宁根大学(荷兰语:Rijksuniversiteit Groningen)位于荷兰格罗宁根,始建于1614年,是荷兰历史第二悠久和第三大大学,学生约三万人。自17世纪建校以来,学校吸引了大量的外国留学生
- 萧昭业萧昭业(473年-494年9月7日),字元尚,小名法身,南朝齐的第三任皇帝,文惠太子萧长懋之长子,齐武帝之孙。萧昭业虽然工于隶书,美容止而获得祖父与父亲的喜爱,但是萧昭业本人是一个阳奉阴违
- alpha cell胰岛A细胞(alpha cells,亦作α-cells),是胰岛中的一种内分泌腺上皮细胞。在正常生理状态下,胰岛α细胞约占胰岛细胞总数的20%,而胰岛β细胞约占75%。胰岛α与胰岛β细胞的比例适当
- 痕量胺痕量胺(英文:Trace amine)是一类与经典的生物胺(如儿茶酚胺类、血清素、组胺)结构类似的内源性物质,包括p-酪胺、β-苯乙胺、色胺、章胺和类甲腺质,存在于动物(昆虫至哺乳动物)的神经
- 以实玛利以实玛利(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey