路径积分表述

✍ dations ◷ 2025-08-23 16:12:19 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符 H {displaystyle H} 是量子力学中的时间演化算符 U ( t b , t a ) {displaystyle U(t_{b},t_{a})} 的生成算符:一个量子粒子在时刻 t a {displaystyle t_{a}} 到 t b {displaystyle t_{b}} 间从位置 x a {displaystyle x_{a}} 运动到 x b {displaystyle x_{b}} 的量子概率幅是:因为 U ( t b , t a ) {displaystyle U(t_{b},t_{a})} 是很复杂的算符函数,直接用以上定义计算 i G ( x b , t b ; x a , t a ) {displaystyle iG(x_{b},t_{b};x_{a},t_{a})} 非常困难。 时间演化算符符合因此量子幅符合此公式的物理理解为:从 ( t a , x a ) {displaystyle (t_{a},x_{a})} 出发,在时刻 t b > t > t a {displaystyle t_{b}>t>t_{a}} 先穿过位置 x {displaystyle x} 再到达 ( t b , x b ) {displaystyle (t_{b},x_{b})} 路径的总量子幅是两段路径量子幅的积;而从 ( t a , x a ) {displaystyle (t_{a},x_{a})} 到 ( t b , x b ) {displaystyle (t_{b},x_{b})} 的量子幅是所有这种路径的和。假设粒子在时刻 t a {displaystyle t_{a}} 到 t b {displaystyle t_{b}} 间从位置 x a {displaystyle x_{a}} 运动到 x b {displaystyle x_{b}} 。那可以把之间的时间平均分割成个别的时间区间: t a = t 0 < t 1 < t 2 < ⋯ < t n − 1 < t n = t b {displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}} 。每一段的时间是 Δ = t b − t a n {displaystyle Delta ={frac {t_{b}-t_{a}}{n}}} 。 在时刻 t j − 1 {displaystyle t_{j-1}} 和 t j {displaystyle t_{j}} 间粒子的量子幅是:因为 p ^ {displaystyle {hat {p}}} 和 x ^ {displaystyle {hat {x}}} 是互不交换的算符,所以必须运用它们的交换子关系: [ p ^ , x ^ ] = i ℏ {displaystyle =ihbar } 把 H ( p ^ , x ^ ) {displaystyle H({hat {p}},{hat {x}})} 修成所有的 p ^ {displaystyle {hat {p}}} 在 x ^ {displaystyle {hat {x}}} 左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时( Δ → 0 {displaystyle Delta rightarrow 0} ),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下, p ^ {displaystyle {hat {p}}} 和 x ^ {displaystyle {hat {x}}} 从算符简化成普通复数。 因此把所有连接 ( t a , x a ) {displaystyle (t_{a},x_{a})} 和 ( t b , x b ) {displaystyle (t_{b},x_{b})} 的路径相加得到的总量子幅是:S {displaystyle S} 是路径 x ( t ) {displaystyle x(t)} 的作用量,拉格朗日量 L ( t , x , x ˙ ) {displaystyle L(t,x,{dot {x}})} 的时间积分:自由粒子的作用量( m = 1 {displaystyle m=1} , ℏ = 1 {displaystyle hbar =1} ):可以插入路径积分里做直接计算。 暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D x {displaystyle {mathcal {D}}x} 是以上时间切成有限片的积分。连乘里每一项都是平均值为 x ( t ) {displaystyle x(t)} 方差为c的高斯函数。多重积分是相邻时间高斯函数 G ϵ {displaystyle G_{epsilon }} 的卷积:这里面共包含 T / ϵ {displaystyle T/epsilon } 个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的 i {displaystyle i} 。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片 ϵ {displaystyle epsilon } 带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何 G {displaystyle G} 的线性组合也符合薛定谔方程,包括以下定义的波函数:和 G {displaystyle G} 一样服从薛定谔方程:配分函数成为泛函积分:Z = ∫ D ϕ   exp ⁡ ( i S ( ϕ ) ) {displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数

相关

  • 切尔诺贝利核事故切尔诺贝利核事故(俄语:Авария на Чернобыльской АЭС,乌克兰语:Чорнобильська катастрофа,英语:Chernobyl disaster),或简称切尔诺
  • Ta4f14 5d3 6s22, 8, 18, 32, 11, 2蒸气压第一:761 kJ·mol−1 第二:1500 kJ·mol体心立方四方主条目:钽的同位素钽(Tantalum,旧译作
  • 猪哥亮猪哥亮(闽南语:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} 豬哥
  • 原子经济性原子经济性(Atom economy)是绿色化学中的一个概念,首先由斯坦福大学的 Trost 提出。它以化学反应中的“原子转化率”来衡量反应的经济程度:如果反应产物是对映异构体之一,为了达
  • 自营生物自养生物,也称为生产者(producer,autotroph),在台湾称为自营生物,主要包括绿色植物和少数微生物,它们可以利用阳光、空气中的二氧化碳、水以及土壤中的无机盐等,通过光合作用或化能
  • 香精香精是将各种香料按适当比例调配而成的,具有一定类型香气的混合香料。用于加工化妆品、食品等。液态的香料也常被称为“香精”,因此两者仅为外观形态的差异。
  • 螯合螯合物(英语:Chelation)是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大
  • 地位未定地位未定(Incertae sedis)是一个分类学上的拉丁文术语,意指“所处位置不明”,也就是某一分类群与其他分类群在分类学上的大致关系尚未确定。举例而言,假如人属(Homo)是一个新发现的
  • Western BlotWestern印迹法(英语:Western blot)或称“蛋白质转渍法”、“免疫印迹法”(immunoblot)或“西式吸印杂交”,是分子生物学、生物化学和免疫遗传学中常用的一种实验方法,也是HIV检测的
  • 离子源离子源是产生原子和分子离子的设备。离子源被用于质谱仪,光学发射光谱仪,粒子加速器,离子注入机和离子发动机形成离子。