首页 >
路径积分表述
✍ dations ◷ 2024-12-22 19:19:21 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符
H
{displaystyle H}
是量子力学中的时间演化算符
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
的生成算符:一个量子粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
的量子概率幅是:因为
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
是很复杂的算符函数,直接用以上定义计算
i
G
(
x
b
,
t
b
;
x
a
,
t
a
)
{displaystyle iG(x_{b},t_{b};x_{a},t_{a})}
非常困难。
时间演化算符符合因此量子幅符合此公式的物理理解为:从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
出发,在时刻
t
b
>
t
>
t
a
{displaystyle t_{b}>t>t_{a}}
先穿过位置
x
{displaystyle x}
再到达
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
路径的总量子幅是两段路径量子幅的积;而从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
到
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的量子幅是所有这种路径的和。假设粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
。那可以把之间的时间平均分割成个别的时间区间:
t
a
=
t
0
<
t
1
<
t
2
<
⋯
<
t
n
−
1
<
t
n
=
t
b
{displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}}
。每一段的时间是
Δ
=
t
b
−
t
a
n
{displaystyle Delta ={frac {t_{b}-t_{a}}{n}}}
。
在时刻
t
j
−
1
{displaystyle t_{j-1}}
和
t
j
{displaystyle t_{j}}
间粒子的量子幅是:因为
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
是互不交换的算符,所以必须运用它们的交换子关系:
[
p
^
,
x
^
]
=
i
ℏ
{displaystyle =ihbar }
把
H
(
p
^
,
x
^
)
{displaystyle H({hat {p}},{hat {x}})}
修成所有的
p
^
{displaystyle {hat {p}}}
在
x
^
{displaystyle {hat {x}}}
左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时(
Δ
→
0
{displaystyle Delta rightarrow 0}
),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下,
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
从算符简化成普通复数。
因此把所有连接
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
和
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的路径相加得到的总量子幅是:S
{displaystyle S}
是路径
x
(
t
)
{displaystyle x(t)}
的作用量,拉格朗日量
L
(
t
,
x
,
x
˙
)
{displaystyle L(t,x,{dot {x}})}
的时间积分:自由粒子的作用量(
m
=
1
{displaystyle m=1}
,
ℏ
=
1
{displaystyle hbar =1}
):可以插入路径积分里做直接计算。
暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D
x
{displaystyle {mathcal {D}}x}
是以上时间切成有限片的积分。连乘里每一项都是平均值为
x
(
t
)
{displaystyle x(t)}
方差为c的高斯函数。多重积分是相邻时间高斯函数
G
ϵ
{displaystyle G_{epsilon }}
的卷积:这里面共包含
T
/
ϵ
{displaystyle T/epsilon }
个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的
i
{displaystyle i}
。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片
ϵ
{displaystyle epsilon }
带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何
G
{displaystyle G}
的线性组合也符合薛定谔方程,包括以下定义的波函数:和
G
{displaystyle G}
一样服从薛定谔方程:配分函数成为泛函积分:Z
=
∫
D
ϕ
exp
(
i
S
(
ϕ
)
)
{displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数
相关
- 神经肌肉阻滞药神经肌肉阻滞药(Neuromuscular-blocking drugs)是可以阻滞神经肌肉接点神经传导的药物,会造成骨骼肌的瘫痪。可以透过在突触前(英语:Presynaptic)作用,抑制乙酰胆碱(ACh)的合成或是释
- 附加符号؋ ₳ ฿ ₿ ₵ ¢ ₡ ₢(英语:Brazilian cruzeiro) $ ₫ ₯ ֏ ₠ € ƒ(英语:Florin sign) ₣ ₲ ₴(英语:Hryvnia sign) ₭ ₺
- 被子植物门传统分类方式:Anthophyta Magnoliophyta Cronquist, Takht. & W.Zimm., 1966被子植物(学名:Angiosperms),又名开花植物或有花植物。(以前的生物学分类称“被子植物门”,而现今被归
- 拉雪兹神父公墓拉雪兹神父公墓(法语:Cimetière du Père-Lachaise,官方名称:cimetière de l'Est,意指“东公墓”)是法国巴黎市区内最大的墓地,位于巴黎第20区,面积超过43万平方米。它是巴黎第一
- 孟菲斯孟斐斯或孟菲斯可以指:
- 萨拉姆·法耶兹萨拉姆·法耶兹(1952年4月29日—),巴勒斯坦著名经济学家,曾任巴勒斯坦总理兼财政部长。1952年4月出生于约旦河西岸图勒凯尔姆地区,曾在贝鲁特美国大学获得理学学士学位,先后在美国
- Ⅰ类抗心律失常药(英语:Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律失常)的药物,这些情况例如心房颤动、心房扑动、心室性心搏过速以及心室颤动。很多人试图将此类药物
- 湿球温度湿球温度(英语:Wet-bulb temperature)是指对一块空气进行加湿,其饱和(相对湿度达到100%)时所达到的温度。 由于汽化潜热由空气块提供,故此温度低于干球温度,也是当前环境仅通过蒸发
- 克劳修斯鲁道夫·尤利乌斯·埃马努埃尔·克劳修斯(德语:Rudolf Julius Emanuel Clausius,1822年1月2日-1888年8月24日),德国物理学家和数学家,热力学的主要奠基人之一。他重新陈述了尼古拉
- HD 164595HD 164595是位于武仙座的一颗G型主序星,距离地球28.927秒差距(〜94.4光年),视星等7.075,使用双筒望远镜或小口径的天文望远镜,参考星图就可以在武仙座中山增一(武仙座ξ)旁边找到它