路径积分表述

✍ dations ◷ 2025-04-02 20:59:22 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符 H {displaystyle H} 是量子力学中的时间演化算符 U ( t b , t a ) {displaystyle U(t_{b},t_{a})} 的生成算符:一个量子粒子在时刻 t a {displaystyle t_{a}} 到 t b {displaystyle t_{b}} 间从位置 x a {displaystyle x_{a}} 运动到 x b {displaystyle x_{b}} 的量子概率幅是:因为 U ( t b , t a ) {displaystyle U(t_{b},t_{a})} 是很复杂的算符函数,直接用以上定义计算 i G ( x b , t b ; x a , t a ) {displaystyle iG(x_{b},t_{b};x_{a},t_{a})} 非常困难。 时间演化算符符合因此量子幅符合此公式的物理理解为:从 ( t a , x a ) {displaystyle (t_{a},x_{a})} 出发,在时刻 t b > t > t a {displaystyle t_{b}>t>t_{a}} 先穿过位置 x {displaystyle x} 再到达 ( t b , x b ) {displaystyle (t_{b},x_{b})} 路径的总量子幅是两段路径量子幅的积;而从 ( t a , x a ) {displaystyle (t_{a},x_{a})} 到 ( t b , x b ) {displaystyle (t_{b},x_{b})} 的量子幅是所有这种路径的和。假设粒子在时刻 t a {displaystyle t_{a}} 到 t b {displaystyle t_{b}} 间从位置 x a {displaystyle x_{a}} 运动到 x b {displaystyle x_{b}} 。那可以把之间的时间平均分割成个别的时间区间: t a = t 0 < t 1 < t 2 < ⋯ < t n − 1 < t n = t b {displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}} 。每一段的时间是 Δ = t b − t a n {displaystyle Delta ={frac {t_{b}-t_{a}}{n}}} 。 在时刻 t j − 1 {displaystyle t_{j-1}} 和 t j {displaystyle t_{j}} 间粒子的量子幅是:因为 p ^ {displaystyle {hat {p}}} 和 x ^ {displaystyle {hat {x}}} 是互不交换的算符,所以必须运用它们的交换子关系: [ p ^ , x ^ ] = i ℏ {displaystyle =ihbar } 把 H ( p ^ , x ^ ) {displaystyle H({hat {p}},{hat {x}})} 修成所有的 p ^ {displaystyle {hat {p}}} 在 x ^ {displaystyle {hat {x}}} 左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时( Δ → 0 {displaystyle Delta rightarrow 0} ),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下, p ^ {displaystyle {hat {p}}} 和 x ^ {displaystyle {hat {x}}} 从算符简化成普通复数。 因此把所有连接 ( t a , x a ) {displaystyle (t_{a},x_{a})} 和 ( t b , x b ) {displaystyle (t_{b},x_{b})} 的路径相加得到的总量子幅是:S {displaystyle S} 是路径 x ( t ) {displaystyle x(t)} 的作用量,拉格朗日量 L ( t , x , x ˙ ) {displaystyle L(t,x,{dot {x}})} 的时间积分:自由粒子的作用量( m = 1 {displaystyle m=1} , ℏ = 1 {displaystyle hbar =1} ):可以插入路径积分里做直接计算。 暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D x {displaystyle {mathcal {D}}x} 是以上时间切成有限片的积分。连乘里每一项都是平均值为 x ( t ) {displaystyle x(t)} 方差为c的高斯函数。多重积分是相邻时间高斯函数 G ϵ {displaystyle G_{epsilon }} 的卷积:这里面共包含 T / ϵ {displaystyle T/epsilon } 个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的 i {displaystyle i} 。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片 ϵ {displaystyle epsilon } 带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何 G {displaystyle G} 的线性组合也符合薛定谔方程,包括以下定义的波函数:和 G {displaystyle G} 一样服从薛定谔方程:配分函数成为泛函积分:Z = ∫ D ϕ   exp ⁡ ( i S ( ϕ ) ) {displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数

相关

  • 老人医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学老年医学(英语:Geriatrics)是医学的一个
  • 婴儿期反射原始反射(英语:Primitive reflexes),是指一类婴儿(而非神经完整的成年人)能够表现出来的、由中枢神经系统产生的正常生理反射行为,其反应类型能够响应特定的刺激。这些反射会随着儿
  • 双关语双关语,又称一语双关,是一种修辞方法,存在于各种自然语言中,是把词语真正的含义模糊化。双关语在一句话中会有很多种意思,使同一个句子可以理解成两种或多种截然不同的意思。利用
  • 亮盖灵芝蕈伞平版状蕈柄裸露异养腐生真菌亮盖灵芝(学名:Ganoderma lucidum),是灵芝属下的一个种。在《神农本草经》中将灵芝依色泽的不同划分成赤芝、黄芝、白芝、青芝、黑芝、紫芝六种
  • 二氧化三碳丙二烯-1,3-二酮二氧化三碳是一个无色刺激性气体,化学式为C3O2,分子中含有四个累积双键。它与CO、CO2、C2O等其他碳氧化物有重要联系。1873年,Brodie通过对一氧化碳放电,首次制
  • 亚伯拉罕·戈特洛布·维尔纳亚伯拉罕·戈特洛布·维尔纳(Abraham Gottlob Werner,1749年9月25日-1817年6月30日),德国的地质学家,1775年起一直担任弗莱贝格矿业学院的矿物学教授。维尔纳是第一个使地质学系统
  • 卡巴耶娃阿林娜·卡巴耶娃(鞑靼语:Älinä Marat qızı Qabayeva,俄语:Алина Маратовна Кабаева,转写:Alina Maratovna Kabaeva,1983年5月12日-),生于乌兹别克斯坦塔什
  • 帕特里克·格迪斯帕特里克·格迪斯爵士(英语:Patrick Geddes,1854年10月2日-1932年4月17日),苏格兰生物学家、社会学家、地理学家、慈善家和城市规划师。他以在城市规划和社会学等领域的创新思维而
  • 阿蒙霍特普一世阿蒙霍特普一世 (英语文献中一般写作:Amenhotep I;?—约前1506年)古埃及第十八王朝法老(约前1525年—约前1506年在位)。阿蒙霍特普一世是雅赫摩斯一世与雅赫摩斯-纳菲尔泰丽的第三
  • 台北国际会议中心坐标:25°2′0″N 121°33′38″E / 25.03333°N 121.56056°E / 25.03333; 121.56056台北国际会议中心(英语:Taipei International Convention Center,以下简称TICC)是台北世界