首页 >
路径积分表述
✍ dations ◷ 2025-12-01 19:49:11 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符
H
{displaystyle H}
是量子力学中的时间演化算符
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
的生成算符:一个量子粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
的量子概率幅是:因为
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
是很复杂的算符函数,直接用以上定义计算
i
G
(
x
b
,
t
b
;
x
a
,
t
a
)
{displaystyle iG(x_{b},t_{b};x_{a},t_{a})}
非常困难。
时间演化算符符合因此量子幅符合此公式的物理理解为:从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
出发,在时刻
t
b
>
t
>
t
a
{displaystyle t_{b}>t>t_{a}}
先穿过位置
x
{displaystyle x}
再到达
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
路径的总量子幅是两段路径量子幅的积;而从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
到
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的量子幅是所有这种路径的和。假设粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
。那可以把之间的时间平均分割成个别的时间区间:
t
a
=
t
0
<
t
1
<
t
2
<
⋯
<
t
n
−
1
<
t
n
=
t
b
{displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}}
。每一段的时间是
Δ
=
t
b
−
t
a
n
{displaystyle Delta ={frac {t_{b}-t_{a}}{n}}}
。
在时刻
t
j
−
1
{displaystyle t_{j-1}}
和
t
j
{displaystyle t_{j}}
间粒子的量子幅是:因为
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
是互不交换的算符,所以必须运用它们的交换子关系:
[
p
^
,
x
^
]
=
i
ℏ
{displaystyle =ihbar }
把
H
(
p
^
,
x
^
)
{displaystyle H({hat {p}},{hat {x}})}
修成所有的
p
^
{displaystyle {hat {p}}}
在
x
^
{displaystyle {hat {x}}}
左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时(
Δ
→
0
{displaystyle Delta rightarrow 0}
),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下,
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
从算符简化成普通复数。
因此把所有连接
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
和
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的路径相加得到的总量子幅是:S
{displaystyle S}
是路径
x
(
t
)
{displaystyle x(t)}
的作用量,拉格朗日量
L
(
t
,
x
,
x
˙
)
{displaystyle L(t,x,{dot {x}})}
的时间积分:自由粒子的作用量(
m
=
1
{displaystyle m=1}
,
ℏ
=
1
{displaystyle hbar =1}
):可以插入路径积分里做直接计算。
暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D
x
{displaystyle {mathcal {D}}x}
是以上时间切成有限片的积分。连乘里每一项都是平均值为
x
(
t
)
{displaystyle x(t)}
方差为c的高斯函数。多重积分是相邻时间高斯函数
G
ϵ
{displaystyle G_{epsilon }}
的卷积:这里面共包含
T
/
ϵ
{displaystyle T/epsilon }
个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的
i
{displaystyle i}
。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片
ϵ
{displaystyle epsilon }
带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何
G
{displaystyle G}
的线性组合也符合薛定谔方程,包括以下定义的波函数:和
G
{displaystyle G}
一样服从薛定谔方程:配分函数成为泛函积分:Z
=
∫
D
ϕ
exp
(
i
S
(
ϕ
)
)
{displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数
相关
- 极度危险物质列表《美国应急规划与社区知情权法》中第302节规定了极度危险物质列表(42 U.S.C. 11002)。这个列表可以在40 C.F.R 355的附录中找到。截止至2006年的更新可以在2006年8月16日的《
- 医疗卫生人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医疗卫生,又称健康照护(英语:Health care
- 髓鞘髓磷脂(英语:Myelin)为包绕在神经元的轴突外部的物质,每隔一段距离便有中断部分,形成一节一节的形状。中断的部分称为“兰氏结”(Ranvier's node)。髓磷脂由30%蛋白质和70%的各类脂
- 赫尔斯特凡·瓦尔特·黑尔(德语:Stefan Walter Hell,1962年12月23日-),生于罗马尼亚阿拉德,德国物理学家、马克斯·普朗克生物物理化学研究所所长之一。2014年,因“研制出超分辨率萤光显
- 萨恩斯·德·奥伊萨弗朗西斯科·哈维尔·萨恩斯·德·奥伊萨(西班牙语:Francisco Javier Saenz de Oiza,1918年10月12日-2000年7月18日)是西班牙纳瓦拉出身的建筑师,被誉为西班牙建筑界现代主义运动
- 甲氧基甲氧基(Methoxy)是具有 -OCH3 结构的基团,可以看成甲基醚的一部分。甲氧基是给电子基(英语:Polar effect)。
- 冠状冠状沟,阴茎颈的俗称,是男性阴茎龟头下缘的一圈沟状构造。尿道海绵体前端膨大成龟头时,于龟头基部形成。为阴茎十分敏感的部位,此处性刺激可达性高潮并发生射精。冠状沟平时为阴
- 脓尿脓尿是一个医学名词,顾名思义,就是指尿液里含脓又或尿道排脓。脓,其实就是死亡或存活的白血球细胞。根据医学上的定义,未离心的尿液内若每立方毫米存有超过四个中性白血球,又或已
- 阿古拉斯洋流阿古拉斯洋流(Agulhas current)是印度洋西南部的西边界流(western boundary current),沿着非洲东岸从27°S 流至 40°S。该洋流窄、急而强;有人甚至认为它可能是世界大洋中最大的
- 真空能量真空能量(Vacuum energy)是一种存在于空间中的背景能量,即使在没有物质的空间(称为自由空间)亦然存在。真空能量导致了多数基本力的存在。它的效应可以在各式各样的实验中观测到,
