首页 >
路径积分表述
✍ dations ◷ 2025-04-26 12:22:31 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符
H
{displaystyle H}
是量子力学中的时间演化算符
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
的生成算符:一个量子粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
的量子概率幅是:因为
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
是很复杂的算符函数,直接用以上定义计算
i
G
(
x
b
,
t
b
;
x
a
,
t
a
)
{displaystyle iG(x_{b},t_{b};x_{a},t_{a})}
非常困难。
时间演化算符符合因此量子幅符合此公式的物理理解为:从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
出发,在时刻
t
b
>
t
>
t
a
{displaystyle t_{b}>t>t_{a}}
先穿过位置
x
{displaystyle x}
再到达
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
路径的总量子幅是两段路径量子幅的积;而从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
到
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的量子幅是所有这种路径的和。假设粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
。那可以把之间的时间平均分割成个别的时间区间:
t
a
=
t
0
<
t
1
<
t
2
<
⋯
<
t
n
−
1
<
t
n
=
t
b
{displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}}
。每一段的时间是
Δ
=
t
b
−
t
a
n
{displaystyle Delta ={frac {t_{b}-t_{a}}{n}}}
。
在时刻
t
j
−
1
{displaystyle t_{j-1}}
和
t
j
{displaystyle t_{j}}
间粒子的量子幅是:因为
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
是互不交换的算符,所以必须运用它们的交换子关系:
[
p
^
,
x
^
]
=
i
ℏ
{displaystyle =ihbar }
把
H
(
p
^
,
x
^
)
{displaystyle H({hat {p}},{hat {x}})}
修成所有的
p
^
{displaystyle {hat {p}}}
在
x
^
{displaystyle {hat {x}}}
左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时(
Δ
→
0
{displaystyle Delta rightarrow 0}
),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下,
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
从算符简化成普通复数。
因此把所有连接
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
和
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的路径相加得到的总量子幅是:S
{displaystyle S}
是路径
x
(
t
)
{displaystyle x(t)}
的作用量,拉格朗日量
L
(
t
,
x
,
x
˙
)
{displaystyle L(t,x,{dot {x}})}
的时间积分:自由粒子的作用量(
m
=
1
{displaystyle m=1}
,
ℏ
=
1
{displaystyle hbar =1}
):可以插入路径积分里做直接计算。
暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D
x
{displaystyle {mathcal {D}}x}
是以上时间切成有限片的积分。连乘里每一项都是平均值为
x
(
t
)
{displaystyle x(t)}
方差为c的高斯函数。多重积分是相邻时间高斯函数
G
ϵ
{displaystyle G_{epsilon }}
的卷积:这里面共包含
T
/
ϵ
{displaystyle T/epsilon }
个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的
i
{displaystyle i}
。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片
ϵ
{displaystyle epsilon }
带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何
G
{displaystyle G}
的线性组合也符合薛定谔方程,包括以下定义的波函数:和
G
{displaystyle G}
一样服从薛定谔方程:配分函数成为泛函积分:Z
=
∫
D
ϕ
exp
(
i
S
(
ϕ
)
)
{displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数
相关
- 巴尔的摩病毒分类系统巴尔的摩病毒分类系统(Baltimore classification)是一种由戴维·巴尔的摩建立的以基因组和病毒转录mRNA方式为区分的病毒分类系统。世界上的病毒千奇百怪,数量极多,生活周期又各
- 地球的未来地球的未来可以由几个地球长期的转变估计,包括地球表面的化学状态、地球内部冷却的速度、地球与其他太阳系行星的摄动,以及太阳光度稳定的增长。这个估计当中有一个不明朗的因
- 利己主义利己主义或自我主义是凡事只为自己或对自己有关系的团体着想的行为。与利他主义相反。单在道德判断上,自己的幸福快乐比别人的来得重要,所以利己主义在许多思想和文化中是一种
- 客体客体或对象(Object)在哲学上指可感知或可想像到的任何事物,既包括客观存在并可观察到的事物(如人物、树木、房屋,抽象的如物价、自由),也包括想像的事物(如神化人物)。
- 统计调查社会统计调查有时也被称作“社会调查”或“调查研究”,但它与中文里的“社会调查”是有区别的,社会调查泛指针对特定的议题收集相关的社会资料与数据的过程,而统计调查则专指对
- 安德尔省安德尔省(法文:Indre)是法国中央大区所辖的省份。该省编号为36。由安德尔河而得名。安德尔省是法国大革命中1790年3月4日依国民制宪议会命令建立的83个省份之一。新省份大致依
- 欧仁·德拉克罗瓦欧仁·德拉克罗瓦(法语:Eugène Delacroix,1798年4月26日—1863年8月13日)是法国著名浪漫主义画家。1798年4月26日出生于法国瓦勒德马恩省,曾师从法国古典主义画派画家皮埃尔-纳
- 猫科动物猫亚科 Felinae 豹亚科 Pantherinae †剑齿虎亚科 Machairodontinae †原小熊猫亚科 Proailurinae猫科包括狮子、老虎和豹等动物,是食肉目的9个科中最具肉食性的哺乳动物。第
- iN-乙酰半胱氨酸乙酰半胱氨酸(Acetylcysteine),又称为N-乙酰半胱氨酸(N-acetylcysteine)或N-乙酰-L-半胱氨酸(N-acetyl-L-cysteine),常简称做NAC。本品可用于治疗对乙酰氨基酚(普拿疼)中毒,且可用于解
- 卡西尼第三定律卡西尼定律(Cassini's laws)对月球的运动提供了一种简洁的叙述。本定律是由著名科学家乔凡尼·多美尼科·卡西尼在1693年提出的。这之后科学界对卡西尼定律的改进包括天平动机