首页 >
路径积分表述
✍ dations ◷ 2025-04-04 05:02:54 #路径积分表述
量子力学和量子场论的路径积分表述(英语:path integral formulation或functional integral)是一个从经典力学里的作用原则延伸出来对量子物理的一种概括和公式化的方法。它以包括两点间所有路径的和或泛函积分而得到的量子幅来取代经典力学里的单一路径。路径积分表述的基本思想可以追溯到诺伯特·维纳,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路径积分表述是理论物理学家理查德·费曼在1948年发展出来。一些早期结果是在约翰·惠勒指导下的费曼的博士论文中在早些时候已经被摸索出。因为路径积分的表述法显然地把时间和空间同等处理,它成为以后理论物理学发展的重要工具之一。路径积分表述也把量子现像和随机现像联系起来。为1970年代量子场论和概括二级相变附近序参数波动的统计场论统一奠下基础。薛定谔方程是虚扩散系数的扩散方程,而路径积分表述是把所有可能的随机移动路径加起来的方法的解析延拓。因此路径积分表述在应用于量子力学前,已经在布朗运动和扩散问题上被应用。哈密顿算符
H
{displaystyle H}
是量子力学中的时间演化算符
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
的生成算符:一个量子粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
的量子概率幅是:因为
U
(
t
b
,
t
a
)
{displaystyle U(t_{b},t_{a})}
是很复杂的算符函数,直接用以上定义计算
i
G
(
x
b
,
t
b
;
x
a
,
t
a
)
{displaystyle iG(x_{b},t_{b};x_{a},t_{a})}
非常困难。
时间演化算符符合因此量子幅符合此公式的物理理解为:从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
出发,在时刻
t
b
>
t
>
t
a
{displaystyle t_{b}>t>t_{a}}
先穿过位置
x
{displaystyle x}
再到达
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
路径的总量子幅是两段路径量子幅的积;而从
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
到
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的量子幅是所有这种路径的和。假设粒子在时刻
t
a
{displaystyle t_{a}}
到
t
b
{displaystyle t_{b}}
间从位置
x
a
{displaystyle x_{a}}
运动到
x
b
{displaystyle x_{b}}
。那可以把之间的时间平均分割成个别的时间区间:
t
a
=
t
0
<
t
1
<
t
2
<
⋯
<
t
n
−
1
<
t
n
=
t
b
{displaystyle t_{a}=t_{0}<t_{1}<t_{2}<cdots <t_{n-1}<t_{n}=t_{b}}
。每一段的时间是
Δ
=
t
b
−
t
a
n
{displaystyle Delta ={frac {t_{b}-t_{a}}{n}}}
。
在时刻
t
j
−
1
{displaystyle t_{j-1}}
和
t
j
{displaystyle t_{j}}
间粒子的量子幅是:因为
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
是互不交换的算符,所以必须运用它们的交换子关系:
[
p
^
,
x
^
]
=
i
ℏ
{displaystyle =ihbar }
把
H
(
p
^
,
x
^
)
{displaystyle H({hat {p}},{hat {x}})}
修成所有的
p
^
{displaystyle {hat {p}}}
在
x
^
{displaystyle {hat {x}}}
左方的正常顺序:做时间切片的作用是:当取切片数趋向无限大的极限时(
Δ
→
0
{displaystyle Delta rightarrow 0}
),原本非正常顺序的哈密顿算符可以以正常顺序版代替。在正常顺序算符下,
p
^
{displaystyle {hat {p}}}
和
x
^
{displaystyle {hat {x}}}
从算符简化成普通复数。
因此把所有连接
(
t
a
,
x
a
)
{displaystyle (t_{a},x_{a})}
和
(
t
b
,
x
b
)
{displaystyle (t_{b},x_{b})}
的路径相加得到的总量子幅是:S
{displaystyle S}
是路径
x
(
t
)
{displaystyle x(t)}
的作用量,拉格朗日量
L
(
t
,
x
,
x
˙
)
{displaystyle L(t,x,{dot {x}})}
的时间积分:自由粒子的作用量(
m
=
1
{displaystyle m=1}
,
ℏ
=
1
{displaystyle hbar =1}
):可以插入路径积分里做直接计算。
暂时把指数函数内i去掉可容许比较简易的理解计算。以后可以用威克转动回到原式:D
x
{displaystyle {mathcal {D}}x}
是以上时间切成有限片的积分。连乘里每一项都是平均值为
x
(
t
)
{displaystyle x(t)}
方差为c的高斯函数。多重积分是相邻时间高斯函数
G
ϵ
{displaystyle G_{epsilon }}
的卷积:这里面共包含
T
/
ϵ
{displaystyle T/epsilon }
个卷积。傅里叶变换下卷积变成普通乘积:高斯函数的傅里叶变换也是一个高斯函数:因此反傅里叶变换可以得到实空间量子幅:时间切片方法原则上不能决定以上比例系数。以随机运动概率来理解可得到以下正规条件:从这条件可得到扩散方程:回到振荡轨道,即恢复分子里的原本的
i
{displaystyle i}
。这可同样得到一系列高斯函数的卷积。但这些高斯积分是严重振荡积分而要小心计算。一个普遍方法是让时间片
ϵ
{displaystyle epsilon }
带一个小虚部。这等同于以威克转动在实时间和虚时间间转换。在这些处理下可得到传播核:运用和之前一样的正规条件,重新得到自由粒子的薛定谔方程:这意味着任何
G
{displaystyle G}
的线性组合也符合薛定谔方程,包括以下定义的波函数:和
G
{displaystyle G}
一样服从薛定谔方程:配分函数成为泛函积分:Z
=
∫
D
ϕ
exp
(
i
S
(
ϕ
)
)
{displaystyle Z=int Dphi exp(iS(phi ))}费米积分(英语:Berezin integral)、格拉斯曼数
相关
- 糖尿病肾病糖尿病肾病(拉丁语:nephropatia diabetica;英语:diabetic nephropathy 或 diabetic kidney disease)也被称为金摩尔史迪尔-威尔逊综合征(Kimmelstiel–Wilson syndrome)、结节性糖
- 丙酮丙酮也称作二甲基酮、二甲基甲醛,简称二甲基醛,或称醋酮、木酮,是最简单的酮,化学式CH3COCH3,为一种有特殊臭味、薄荷气味的无色可燃液体。在常温下为无色透明液体,易挥发、易燃,有
- 副极地气候副极地气候(subpolar climate),又名副极地大陆性气候、亚寒带气候(Subarctic climate)、亚寒带针叶林气候或雪林气候、极北气候(boreal climate),是一种主要分布在北纬50ºN至65ºN
- 卫生公共卫生是通过组织社区资源,为公众提供疾病预防和健康促进的一门管理学,它使用预防医学、健康促进、环境卫生、社会科学等技术和手段。公共卫生体系由国际公共卫生组织、国家
- 类在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成
- IMP肌苷酸(次黄苷酸,Inosinic acid),又名次黄嘌呤核苷酸(Inosine monophosphate,IMP),是一种在核糖核酸(RNA)中发现的核苷酸。在酶的作用下,由肌苷酸可以分解得到次黄嘌呤。其在体内主要参
- 白雪公主与七个小矮人《白雪公主与七个小矮人》(英语:Snow White and the Seven Dwarfs)发行于1937年,是迪士尼首部经典动画长片,也是美国电影史上第一部彩色动画长片,改编自欧洲《格林童话》故事版本
- 澳大利亚总督澳大利亚主题澳大利亚联邦总督(Governor-General of the Commonwealth of Australia)是澳大利亚君主在当地的代表。按照现行澳大利亚宪法,澳大利亚是英联邦王国,君主为英国君主
- 地球磁场地磁场是源自于地球内部,并延伸到太空的磁场。磁场在地表上的强度在25-65微特斯拉(即0.25至0.65高斯)之间。粗略地说,地磁场是一个与地球自转轴呈11°夹角的磁偶极子,相当于在地球
- 雨神星雨神星(小行星38628,2000 EB173)是一个外海王星天体,2000年3月10日由伊格纳西奥·费瑞恩(Ignacio Ferrin)发现,2003年8月国际天文联会正式命名为Huya,Huya为南美洲印第安神话中的