光线转换矩阵分析

✍ dations ◷ 2025-04-25 18:53:36 #几何光学,加速器物理学

光线转换矩阵分析(又称ABCD矩阵分析),是用于某些光学系统,特别是激光领域的一种光线追踪技术。它包含一个描述光学系统的光线转化矩阵(ray transfer matrix),这个矩阵与一代表光线的向量相乘之后,可以得到光线在该系统中的运行轨迹。这类的分析也被应用于加速器物理(accelerator physics)中,用以追踪通过粒子加速器中磁铁装置的粒子,详情请见电子光学。

以下介绍的技术使用了近轴逼近法,此逼近法意即假设所有光线相对于系统的光轴(optical axis)都处于小角度(θ为径度)、短距离(x)。

光线追踪技术以两个平面为参考面, 分别为输入平面与输出平面, 这两个平面均垂直于系统的光轴。此外,为了理论的一般性,我们定义系统的光轴即直角坐标系的z轴。一光线与输入面呈θ1,从距离光轴 1 的入射面进入系统,并在距光轴的2的输出面呈θ2射出,而1, 2分别是在输入面与输出面中介质的折射率。

这些参数可表成下列关系式:

这个关系式以光线转化矩阵(RTM, M)将光线向量与输入、输出面互相连结,M代表的是在这两个平面之间的光学系统。根据折射定律与几何关系,可以证明RTM行列式值(determinant)即是两个折射率的比值。

因此,若是输入面与输出面在同一个介质中,或是在具有同一个折射率的不同介质中,M等于1,相似的技术可以应用于电路学上,见二埠网络。

若两个面中有空间存在,光线转换矩阵可以表示成:

其中d表示两参考平面的距离(沿着光轴测量),此矩阵有下列关系:

两光线各别的参数可表示如下:

另一个范例为一薄透镜,其光线转画矩阵为:

其中f为透镜的焦距。若遇表示依复合光学系统,光线转化矩阵可以交互相乘,形成一总括光线转化矩阵,以下范例唯为一长度为d的空间与薄透镜的复合系统:

注意,矩阵的乘法并没有交换率,因此下面的系统先为一薄透镜,后为一空间。

因此,矩阵必须照顺序排好。不同的矩阵可以代表不同折射率的介质,或者是面镜的反射等等。

简易的光学元素

2 为折射后的环境折射率

1 为入射时的环境折射率
2 为折射后的环境折射率

唯有在焦距远大于透镜厚度时成立

2 为透镜内的折射率
1 为第一表面的曲率半径
2 为第二表面的曲率半径
为透镜的中心厚度

RTM在模拟光学共振系统的时候特别有用,像是激光。在最简单的情况下由两个完全相同,具100%反射率、曲率半径R相互距离为d的面镜组成。为了达到光学追踪的目的,上述的系统可以等同于由一系列焦距为R/2,彼此间的距离为d的薄透镜所组成的系统,此结构又被称为a lens equivalent duct或lens equivalent waveguide. 上述系统每一个波导下的RTM如下:

光学转化矩阵分析此时就可以决定一个波导的稳定性(等同于共振器),意即RTM可以找出光可以周期性地再聚焦,并待在波导内的状况。我们可以找到系统中所有光的”eigenrays”,入射向量在每个mentioned sections的波导乘上一个实数或是复数的 λ 将会等于1。 使得:

此为一本征方程式:

其中I为一2x2单位矩阵。我们可以进一步计算此转化矩阵的本征值:

可导出以下特征方程式:

其中

是RTM的轨迹,且

是RTM行列式值的倒数,带入消去后我们可以得到:

其中

是稳定参数。本征值是本征方程式的解,由一元二次方程式可以解出:

现在,考虑一个光线通过系统N次:

如果此波导是稳定的,所有的光都不会被随意的引道到偏离主轴很远的地方,意即λN必须是有限的。吾人假设g2>1,则两本征值均为实数,又因为λ+λ- = 1 ,因此其中一个的绝对值必须大于1,这也暗示了代表本征向量的光线不会收敛。因此在依稳定的波导中,g2≤1,以及本征值可以用复数形式表示:

以g=cos(φ)表示。

假设 g 2 < 1 {\displaystyle g^{2}<1} r + {\displaystyle r_{+}} , r {\displaystyle r_{-}} λ + {\displaystyle \lambda _{+}} , λ {\displaystyle \lambda _{-}} 的本征向量,此两向量横跨所有向量空间,因为他们是正交因此输入的向量可以被表示成:

c + {\displaystyle c_{+}} and c {\displaystyle c_{-}} 为某常数

再通过N个波导后,输出则为:

这代表一个周期函数。

光线转化矩阵的建立也可以用于描述高斯光束(Gaussian beams),若有一高斯光束波长为λ0,曲率半径为R,光点大小w,折射率n,我们可以定义出一复数光束参数(complex beam parameter) q:

此光束可以转移至一具有下列光线转化矩阵的光学系统:

其中k为标准化常数,此常数可以让光束向量的第二个成分为1,利用矩阵乘法:

由上式除以下式可得:

此方程式常以倒数形式表示:

假设一光束通过一距离为d的空间,光线转化矩阵为: = {\displaystyle {\begin{bmatrix}A&B\\C&D\end{bmatrix}}={\begin{bmatrix}1&d\\0&1\end{bmatrix}}} .因此

这表示,通过一空间会增加半径d。

假设一光束通过一焦距为f的薄透镜,光线转化矩阵为:

因此

再次强调,只有q的实部会被影响,曲率半径会减少1/f。

相关

  • 拉施德丁拉施德丁(波斯语:رشیدالدین فضل‌الله همدانی‎,Rashid-al-Din Hamadani‎,1247年-1318年),伊儿汗国丞相,学者。出生在伊朗哈马丹一个犹太人学者家中,后来改宗
  • 酮症酮症是一种代谢状态,当体内的葡萄糖不足时,肝脏会将脂肪转换成脂肪酸与酮体,取代原本由葡萄糖负责的能量来源。当血中酮体的含量大于0.5mM,且有长时间的低血糖及低胰岛素含量,即
  • WSsub2/sub二硫化钨是一种无机化合物,化学式为WS2。灰色有金属光泽的细小六方晶系结晶或粉末。在空气中稳定。不溶于水,溶于硝酸和氢氟酸混酸中。溶于熔融碱,不溶于醇。钨酸铵与硫化氢气
  • π重叠重叠(英语:Stacking,又译堆积)在超分子化学中是指芳香性分子的一类排列堆积形式。例如DNA中连续性碱基的堆积系统,或是某些具有两个非极性环的酵素,会以π轨道重叠的方式而堆积在
  • Crsub2/subOsub3/sub三氧化二铬是一个无机氧化物,化学式为Cr2O3,其中的铬为+3氧化态。三氧化二铬是常见的铬氧化物之一,用于制取其他铬化合物。Cr2O3晶体结构与Al2O3类似,氧原子为立方紧密堆积结构,
  • 永信药品永信药品工业股份有限公司(英语:YUNGSHIN PHARM IND. CO., LTD.,简称永信药品),是台湾的一间制药公司,于1965年创立,目前为永信国际投资控股股份有限公司之全额控股子公司。于美国
  • 论衡《论衡》,是中国东汉时期思想家王充的重要著作。全书共计十三卷,八十五篇,佚亡一篇。主要阐述了作者无神论的思想观点,对当时社会上谶纬盛行,社会上层和民间流行各种神秘主义进行
  • 观测宇宙学观测宇宙学是宇宙学的分支之一,研究者使用观测方法研究宇宙的起源和演化。观测主要借由望远镜、宇宙射线探测器、引力波探测器等探测仪器进行。现今物理宇宙学的主要内容是在
  • 隼形目隼科(学名:Falconidae)是鸟纲隼形目(学名:Falconiformes)底下的唯一单科,共11属63种,在中国有2属14种分布。在旧有的鸟类传统分类系统中隼形目包含现在已经分开的鹰形目(Accipitrifor
  • 斯蒂芬·梅努钦斯蒂芬·特纳·姆努钦(Steven Terner Mnuchin,i/məˈnuːtʃɪn/ mə-NOO-chin;1962年12月21日-)是美国的一位银行家,现任美国财政部长;曾是电影制片人和对冲基金经理。他出生在一