首页 >
可观察量
✍ dations ◷ 2025-09-02 12:36:45 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量
O
{displaystyle O}
是某量子系统的可观察量,其对应的量子算符
O
^
{displaystyle {hat {O}}}
,可能有很多不同的本征值
O
i
{displaystyle O_{i}}
与对应的本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,这些本征态
|
e
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了具有正交归一性的基底::96-99其中,
δ
i
j
{displaystyle delta _{ij}}
是克罗内克函数。任何描述这量子系统的量子态
|
ψ
⟩
{displaystyle |psi rangle }
,都可以用这基底的本征态表示为其中,
c
i
=
⟨
e
i
|
ψ
⟩
{displaystyle c_{i}=langle e_{i}|psi rangle }
是复系数,是在量子态
|
e
i
⟩
{displaystyle |e_{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50假设,量子态
|
ψ
⟩
{displaystyle |psi rangle }
等于这些本征态之中的一个本征态
|
e
k
⟩
{displaystyle |e_{k}rangle }
,则对于这量子系统,测量可观察量
O
{displaystyle O}
,得到的结果必定等与本征值
O
k
{displaystyle O_{k}}
,概率为1,量子态
|
ψ
⟩
{displaystyle |psi rangle }
是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符
O
^
{displaystyle {hat {O}}}
的一个本征态。假设量子态改变为本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,则改变为这本征态的概率为
p
i
=
|
c
i
|
2
{displaystyle p_{i}=|c_{i}|^{2}}
,测量结果是本征值
O
i
{displaystyle O_{i}}
,得到这本征值的概率也为
p
i
{displaystyle p_{i}}
。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
。将算符
O
^
{displaystyle {hat {O}}}
作用于量子态
|
ψ
⟩
{displaystyle |psi rangle }
,会形成新量子态
|
ϕ
⟩
{displaystyle |phi rangle }
:从左边乘以量子态
⟨
ψ
|
{displaystyle langle psi |}
,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量
O
{displaystyle O}
的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量
O
{displaystyle O}
的期望值是实数:对于任意量子态
|
ψ
⟩
{displaystyle |psi rangle }
,这关系都成立:根据伴随算符的定义,假设
O
^
†
{displaystyle {hat {O}}^{dagger }}
是
O
^
{displaystyle {hat {O}}}
的伴随算符,则
⟨
ψ
|
O
^
|
ψ
⟩
∗
=
⟨
ψ
|
O
^
†
|
ψ
⟩
{displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle }
。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中,
A
^
{displaystyle {hat {A}}}
、
B
^
{displaystyle {hat {B}}}
分别是可观察量
A
{displaystyle A}
、
B
{displaystyle B}
的算符。这两种算符
A
^
{displaystyle {hat {A}}}
与
B
^
{displaystyle {hat {B}}}
绝对不会有共同的基底。一般而言,
A
^
{displaystyle {hat {A}}}
的本征态与
B
^
{displaystyle {hat {B}}}
的本征态不同假设量子系统的量子态为
|
ψ
⟩
{displaystyle |psi rangle }
。对于算符
A
^
{displaystyle {hat {A}}}
,所有本征值为
a
i
{displaystyle a_{i}}
的本征态
|
α
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
c
i
=
⟨
α
i
|
ψ
⟩
{displaystyle c_{i}=langle alpha _{i}|psi rangle }
是复系数,是在量子态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于算符
B
^
{displaystyle {hat {B}}}
,所有本征值为
b
i
{displaystyle b_{i}}
的本征态
|
β
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了另外一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
d
i
=
⟨
β
i
|
ψ
⟩
{displaystyle d_{i}=langle beta _{i}|psi rangle }
是复系数,是在量子态
|
β
i
⟩
{displaystyle |beta _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于量子系统的可观察量
A
{displaystyle A}
做测量,可能得到的结果是各种本征态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
的本征值
a
i
{displaystyle a_{i}}
,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为
a
i
{displaystyle a_{i}}
的概率是
|
c
i
|
2
{displaystyle |c_{i}|^{2}}
。假设测量的结果是本征值
a
j
{displaystyle a_{j}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
。假若立刻再测量可观察量
A
{displaystyle A}
,由于量子态仍旧是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
,所得到的测量值是本征值
a
i
{displaystyle a_{i}}
概率为1。假若立刻再对本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
测量可观察量
B
{displaystyle B}
,则会得到统计性的答案。假设测量的结果是本征值
b
k
{displaystyle b_{k}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
β
k
⟩
{displaystyle |beta _{k}rangle }
。根据不确定性原理,设定
χ
=
|
⟨
[
A
^
,
B
^
]
⟩
2
i
|
{displaystyle chi =left|{frac {langle rangle }{2i}}right|}
。假设,
A
{displaystyle A}
与
B
{displaystyle B}
是两个不相容可观察量,则
χ
>
0
{displaystyle chi >0}
。而
A
{displaystyle A}
的不确定性与
B
{displaystyle B}
的不确定性的乘积
Δ
A
Δ
B
{displaystyle Delta A Delta B}
,必定大于或等于
χ
{displaystyle chi }
。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置
x
{displaystyle x}
,动量
p
{displaystyle p}
都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量
L
^
x
{displaystyle {hat {L}}_{x}}
是厄米算符。因为其中,
y
{displaystyle y}
与
z
{displaystyle z}
分别是位置的y-分量与z-分量,
p
y
{displaystyle p_{y}}
与
p
z
{displaystyle p_{z}}
分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量
L
^
y
{displaystyle {hat {L}}_{y}}
也是厄米算符。
相关
- 充血性心力衰竭心脏衰竭(法语:Insuffisance cardiaque,英语:HF, heart failure),一般意指慢性心脏衰竭(英语:CHF, chronic heart failure)。但是有时则指郁血性心力衰竭(congestive heart failure),当
- 温跃层温跃层(英语:thermocline),又译温度跃层、斜温层、温度突变层等,是指在海洋或湖沼等大型水体内部,水温在沿垂线方向急剧变化的水层。海洋分层中,温跃层是分布在混合层之下。随着季
- 交沙霉素交沙霉素又称为“角沙霉素”,是一种大环内酯类抗生素(分子中包含一个14元环)。交沙霉素为白色或微黄白色结晶性粉末,无臭,味苦,极易溶于乙醇、乙醚或氯仿,极微溶于水。该抗生素由那
- 咸丰帝清朝第9位皇帝孝钦显皇后叶赫那拉氏咸丰帝(1831年7月17日-1861年8月22日),爱新觉罗氏,名奕
- 史蒂芬斯-强森症候群史蒂芬斯-强森综合征(英语:Stevens-Johnson syndrome,缩写为 SJS),又称史提芬强生综合征、史帝文生氏-强生综合征、史帝文生-强生综合征,是"多型性红斑"(Erythema multiforme)的一
- 阴虱/阴蟹Pediculus pubis Linnaeus, 1758阴虱(Pthirus pubis)是一种寄生于人体毛发的寄生虫,长约1至3毫米,无翼。因常见于阴部,故称阴虱。另外,由于阴虱身体扁平,远看如同皮屑,细看则如同小
- 泰奥弗拉斯托斯泰奥弗拉斯托斯(希腊语:Θεόφραστος,转写:Theόphrastos,也称提奥弗拉斯特,约前371年-约前287年),公元前4世纪的古希腊哲学家和科学家,先后受敎于柏拉图和亚里士多德,后来接替
- 教育学教育学是研究教育现象和教育问题,揭示教育规律的一门学科,是一门研究如何培养人的科学。教育学作为一种思想和想象,零星记载于当时的思想家、哲学家的言论和著作中,如柏拉图的《
- 生化工程生化工程(英语:biochemical engineering),亦称生物技术工程(biotechnology engineering)或生物程序工程(bioprocess engineering)等,是化学工程的一门分支,主要致力于设计并建立包含生
- 三姑六婆三姑六婆原本指的是古代中国民间女性的几种职业。语出元末明初陶宗仪的《南村辍耕录》。现代汉语中的“三姑六婆”常指社会上各式市井女性或喜爱搬弄是非的人。三姑:尼姑、道