可观察量

✍ dations ◷ 2025-08-10 16:58:40 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量 O {displaystyle O} 是某量子系统的可观察量,其对应的量子算符 O ^ {displaystyle {hat {O}}} ,可能有很多不同的本征值 O i {displaystyle O_{i}} 与对应的本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,这些本征态 | e i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了具有正交归一性的基底::96-99其中, δ i j {displaystyle delta _{ij}} 是克罗内克函数。任何描述这量子系统的量子态 | ψ ⟩ {displaystyle |psi rangle } ,都可以用这基底的本征态表示为其中, c i = ⟨ e i | ψ ⟩ {displaystyle c_{i}=langle e_{i}|psi rangle } 是复系数,是在量子态 | e i ⟩ {displaystyle |e_{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50假设,量子态 | ψ ⟩ {displaystyle |psi rangle } 等于这些本征态之中的一个本征态 | e k ⟩ {displaystyle |e_{k}rangle } ,则对于这量子系统,测量可观察量 O {displaystyle O} ,得到的结果必定等与本征值 O k {displaystyle O_{k}} ,概率为1,量子态 | ψ ⟩ {displaystyle |psi rangle } 是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符 O ^ {displaystyle {hat {O}}} 的一个本征态。假设量子态改变为本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,则改变为这本征态的概率为 p i = | c i | 2 {displaystyle p_{i}=|c_{i}|^{2}} ,测量结果是本征值 O i {displaystyle O_{i}} ,得到这本征值的概率也为 p i {displaystyle p_{i}} 。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态 | e i ⟩ {displaystyle |e_{i}rangle } 。将算符 O ^ {displaystyle {hat {O}}} 作用于量子态 | ψ ⟩ {displaystyle |psi rangle } ,会形成新量子态 | ϕ ⟩ {displaystyle |phi rangle } :从左边乘以量子态 ⟨ ψ | {displaystyle langle psi |} ,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量 O {displaystyle O} 的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量 O {displaystyle O} 的期望值是实数:对于任意量子态 | ψ ⟩ {displaystyle |psi rangle } ,这关系都成立:根据伴随算符的定义,假设 O ^ † {displaystyle {hat {O}}^{dagger }} 是 O ^ {displaystyle {hat {O}}} 的伴随算符,则 ⟨ ψ | O ^ | ψ ⟩ ∗ = ⟨ ψ | O ^ † | ψ ⟩ {displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle } 。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中, A ^ {displaystyle {hat {A}}} 、 B ^ {displaystyle {hat {B}}} 分别是可观察量 A {displaystyle A} 、 B {displaystyle B} 的算符。这两种算符 A ^ {displaystyle {hat {A}}} 与 B ^ {displaystyle {hat {B}}} 绝对不会有共同的基底。一般而言, A ^ {displaystyle {hat {A}}} 的本征态与 B ^ {displaystyle {hat {B}}} 的本征态不同假设量子系统的量子态为 | ψ ⟩ {displaystyle |psi rangle } 。对于算符 A ^ {displaystyle {hat {A}}} ,所有本征值为 a i {displaystyle a_{i}} 的本征态 | α i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, c i = ⟨ α i | ψ ⟩ {displaystyle c_{i}=langle alpha _{i}|psi rangle } 是复系数,是在量子态 | α i ⟩ {displaystyle |alpha _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于算符 B ^ {displaystyle {hat {B}}} ,所有本征值为 b i {displaystyle b_{i}} 的本征态 | β i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了另外一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, d i = ⟨ β i | ψ ⟩ {displaystyle d_{i}=langle beta _{i}|psi rangle } 是复系数,是在量子态 | β i ⟩ {displaystyle |beta _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于量子系统的可观察量 A {displaystyle A} 做测量,可能得到的结果是各种本征态 | α i ⟩ {displaystyle |alpha _{i}rangle } 的本征值 a i {displaystyle a_{i}} ,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为 a i {displaystyle a_{i}} 的概率是 | c i | 2 {displaystyle |c_{i}|^{2}} 。假设测量的结果是本征值 a j {displaystyle a_{j}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 。假若立刻再测量可观察量 A {displaystyle A} ,由于量子态仍旧是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } ,所得到的测量值是本征值 a i {displaystyle a_{i}} 概率为1。假若立刻再对本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 测量可观察量 B {displaystyle B} ,则会得到统计性的答案。假设测量的结果是本征值 b k {displaystyle b_{k}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | β k ⟩ {displaystyle |beta _{k}rangle } 。根据不确定性原理,设定 χ = | ⟨ [ A ^ , B ^ ] ⟩ 2 i | {displaystyle chi =left|{frac {langle rangle }{2i}}right|} 。假设, A {displaystyle A} 与 B {displaystyle B} 是两个不相容可观察量,则 χ > 0 {displaystyle chi >0} 。而 A {displaystyle A} 的不确定性与 B {displaystyle B} 的不确定性的乘积 Δ A   Δ B {displaystyle Delta A Delta B} ,必定大于或等于 χ {displaystyle chi } 。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置 x {displaystyle x} ,动量 p {displaystyle p} 都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量 L ^ x {displaystyle {hat {L}}_{x}} 是厄米算符。因为其中, y {displaystyle y} 与 z {displaystyle z} 分别是位置的y-分量与z-分量, p y {displaystyle p_{y}} 与 p z {displaystyle p_{z}} 分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量 L ^ y {displaystyle {hat {L}}_{y}} 也是厄米算符。

相关

  • 氨基糖苷类抗生素胺基糖苷类抗生素(aminoglycoside)是具有氨基糖与氨基环醇(英语:aminocyclitol)结构的一类抗生素,在临床主要用于对革兰氏阴性菌、绿脓杆菌等感染的治疗,1960年代到1970年代曾经非
  • 方式关系方式关系(英语:troponymy)指的是词位之间因“方式”的联系而存在的关系。这个概念由克里斯蒂安妮·费尔巴姆(英语:Christiane Fellbaum)和乔治·A·米勒首次提出。例如,咕哝、嘟囔
  • 母乳喂养母乳哺育(Breastfeeding),亦称哺乳、授乳或母乳喂养,指的是女性以乳房喂食婴儿母乳的行为。婴儿有吮吸反射,因此可以吮吸乳房并吞咽母乳,专家建议在出生后一小时即可哺喂母乳,之后
  • 水葬水葬,是将尸体投入江河湖海中的一种丧葬方式。这种习俗主要流行于大洋洲的部分族群和亚洲中国南方的部分地区中。而水葬中目前最为出名的海葬,则主要流行于欧美地区。早在中国
  • QIATCvet代码QI(免疫产品)是兽用解剖学治疗学及化学分类系统的一个分类,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborating Centre for Drug Statistics Methodology
  • 促肾上腺皮质激素促肾上腺皮质激素(英语:adrenocorticotropic hormone, ACTH)——或简称促皮质素(corticotropin)——是一种多肽激素,生产并分泌于脑垂体,是下丘脑-脑垂体-肾上腺皮质轴(hypothalamic
  • 三级会议在法国旧制度中,三级会议(法语:États généraux)指的是法国全国人民的代表应国王的召集而举行的会议。参加者共分成三级:第一级为神职人员、第二级为贵族、第三级为除前两个级
  • 边界在字体排印学中,边界指的是某页文件中四周留白的部分,可方便辨认行的起点和终点。当文字是以左右对齐排列时,其会贴紧左侧和右侧的边界。在多数的文书处理软件中,边界的标准宽度
  • 决策支持系统决策支持系统(Decision Support Systems,简称DSS),是协助进行商业级或组织级决策活动的信息系统。DSSs一般面向中高层面管理,服务于组织机构内部管理、操作和规划级的决策,帮助决
  • 根本原因根本原因,有时又称为根本、根因、根或本,是指导致某种结局或后果的因果关系链条的初始原因。通常,根本原因用于描述在因果链之中最深的层次;在这种层次才可能合理有效地实施某种