首页 >
可观察量
✍ dations ◷ 2025-04-03 12:31:46 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量
O
{displaystyle O}
是某量子系统的可观察量,其对应的量子算符
O
^
{displaystyle {hat {O}}}
,可能有很多不同的本征值
O
i
{displaystyle O_{i}}
与对应的本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,这些本征态
|
e
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了具有正交归一性的基底::96-99其中,
δ
i
j
{displaystyle delta _{ij}}
是克罗内克函数。任何描述这量子系统的量子态
|
ψ
⟩
{displaystyle |psi rangle }
,都可以用这基底的本征态表示为其中,
c
i
=
⟨
e
i
|
ψ
⟩
{displaystyle c_{i}=langle e_{i}|psi rangle }
是复系数,是在量子态
|
e
i
⟩
{displaystyle |e_{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50假设,量子态
|
ψ
⟩
{displaystyle |psi rangle }
等于这些本征态之中的一个本征态
|
e
k
⟩
{displaystyle |e_{k}rangle }
,则对于这量子系统,测量可观察量
O
{displaystyle O}
,得到的结果必定等与本征值
O
k
{displaystyle O_{k}}
,概率为1,量子态
|
ψ
⟩
{displaystyle |psi rangle }
是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符
O
^
{displaystyle {hat {O}}}
的一个本征态。假设量子态改变为本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,则改变为这本征态的概率为
p
i
=
|
c
i
|
2
{displaystyle p_{i}=|c_{i}|^{2}}
,测量结果是本征值
O
i
{displaystyle O_{i}}
,得到这本征值的概率也为
p
i
{displaystyle p_{i}}
。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
。将算符
O
^
{displaystyle {hat {O}}}
作用于量子态
|
ψ
⟩
{displaystyle |psi rangle }
,会形成新量子态
|
ϕ
⟩
{displaystyle |phi rangle }
:从左边乘以量子态
⟨
ψ
|
{displaystyle langle psi |}
,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量
O
{displaystyle O}
的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量
O
{displaystyle O}
的期望值是实数:对于任意量子态
|
ψ
⟩
{displaystyle |psi rangle }
,这关系都成立:根据伴随算符的定义,假设
O
^
†
{displaystyle {hat {O}}^{dagger }}
是
O
^
{displaystyle {hat {O}}}
的伴随算符,则
⟨
ψ
|
O
^
|
ψ
⟩
∗
=
⟨
ψ
|
O
^
†
|
ψ
⟩
{displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle }
。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中,
A
^
{displaystyle {hat {A}}}
、
B
^
{displaystyle {hat {B}}}
分别是可观察量
A
{displaystyle A}
、
B
{displaystyle B}
的算符。这两种算符
A
^
{displaystyle {hat {A}}}
与
B
^
{displaystyle {hat {B}}}
绝对不会有共同的基底。一般而言,
A
^
{displaystyle {hat {A}}}
的本征态与
B
^
{displaystyle {hat {B}}}
的本征态不同假设量子系统的量子态为
|
ψ
⟩
{displaystyle |psi rangle }
。对于算符
A
^
{displaystyle {hat {A}}}
,所有本征值为
a
i
{displaystyle a_{i}}
的本征态
|
α
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
c
i
=
⟨
α
i
|
ψ
⟩
{displaystyle c_{i}=langle alpha _{i}|psi rangle }
是复系数,是在量子态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于算符
B
^
{displaystyle {hat {B}}}
,所有本征值为
b
i
{displaystyle b_{i}}
的本征态
|
β
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了另外一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
d
i
=
⟨
β
i
|
ψ
⟩
{displaystyle d_{i}=langle beta _{i}|psi rangle }
是复系数,是在量子态
|
β
i
⟩
{displaystyle |beta _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于量子系统的可观察量
A
{displaystyle A}
做测量,可能得到的结果是各种本征态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
的本征值
a
i
{displaystyle a_{i}}
,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为
a
i
{displaystyle a_{i}}
的概率是
|
c
i
|
2
{displaystyle |c_{i}|^{2}}
。假设测量的结果是本征值
a
j
{displaystyle a_{j}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
。假若立刻再测量可观察量
A
{displaystyle A}
,由于量子态仍旧是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
,所得到的测量值是本征值
a
i
{displaystyle a_{i}}
概率为1。假若立刻再对本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
测量可观察量
B
{displaystyle B}
,则会得到统计性的答案。假设测量的结果是本征值
b
k
{displaystyle b_{k}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
β
k
⟩
{displaystyle |beta _{k}rangle }
。根据不确定性原理,设定
χ
=
|
⟨
[
A
^
,
B
^
]
⟩
2
i
|
{displaystyle chi =left|{frac {langle rangle }{2i}}right|}
。假设,
A
{displaystyle A}
与
B
{displaystyle B}
是两个不相容可观察量,则
χ
>
0
{displaystyle chi >0}
。而
A
{displaystyle A}
的不确定性与
B
{displaystyle B}
的不确定性的乘积
Δ
A
Δ
B
{displaystyle Delta A Delta B}
,必定大于或等于
χ
{displaystyle chi }
。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置
x
{displaystyle x}
,动量
p
{displaystyle p}
都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量
L
^
x
{displaystyle {hat {L}}_{x}}
是厄米算符。因为其中,
y
{displaystyle y}
与
z
{displaystyle z}
分别是位置的y-分量与z-分量,
p
y
{displaystyle p_{y}}
与
p
z
{displaystyle p_{z}}
分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量
L
^
y
{displaystyle {hat {L}}_{y}}
也是厄米算符。
相关
- 生殖医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学生殖医学(Reproductive medicine)是医学
- 台大医院国立台湾大学医学院附设医院,简称台大医院(英语:National Taiwan University Hospital),是台湾一所公立医院,乃台湾第一所提供西式医疗服务的政府医疗机构,总院区位于台北市中山南
- 哈里·霍普金斯哈里·劳埃德·霍普金斯(Harry Lloyd Hopkins,1890年8月17日 - 1946年1月29日),美国政治家,美国民主党人,曾任美国商务部长(1938年-1940年)。霍普金斯是美国总统富兰克林·D·罗斯福
- 中世纪 (消歧义)中世纪是指位处欧洲历史中约公元后5世纪至15世纪这段时间。中世纪还可以指:
- 污染物排放控制技术污染物排放控制基本从三个方面开发:第一种方法是目前最常用的方法,但需要投入并没有经济效益,采取这种方法肯定会增加生产成本,降低产品竞争力,一般污染物排放单位不会自动处理,必
- 前戏前戏(英语:foreplay,日语:前戯)或性前嬉指人类性事过程中一连串情感亲密和身体亲密的动作组合,人们两两之间借此挑起性兴奋与从事性活动的期望。有意开始前戏的可以是性伴侣的任何
- 孤儿药孤儿药(英语:Orphan drug,亦称为'的是一些专门用于治愈(cure)或治疗(控制,treat)罕见疾病的特效药物。取自孤儿孤苦无依且乏人重视的概念。由于孤儿药的市场需求太小,正常情况下药物
- 五十肩沾黏性肩关节囊炎(adhesive capsulitis),又名肩周炎、冻结肩、冰冻肩(Frozen Shoulder),因好发在四十至六十五岁之间,故俗称五十肩,是肩膀部分会造成疼痛及失能的病症,因肩关节囊及肩
- 筑波大学筑波大学(日语:筑波大学/つくばだいがく Tsukuba daigaku;英语译名:University of Tsukuba),是一所本部位于茨城县筑波市天王台1-1-1号的日本国立大学,也是结合筑波研究学园都市的
- 可证伪性可证伪性(英语:Falsifiability),又称可反证性、可否证性,在科学和科学哲学中用来表示由经验得来的表述所具有的一种属性,并使用严格证伪法来判别一个理论是否科学,即“这些结论必须