首页 >
可观察量
✍ dations ◷ 2025-07-19 06:42:00 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量
O
{displaystyle O}
是某量子系统的可观察量,其对应的量子算符
O
^
{displaystyle {hat {O}}}
,可能有很多不同的本征值
O
i
{displaystyle O_{i}}
与对应的本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,这些本征态
|
e
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了具有正交归一性的基底::96-99其中,
δ
i
j
{displaystyle delta _{ij}}
是克罗内克函数。任何描述这量子系统的量子态
|
ψ
⟩
{displaystyle |psi rangle }
,都可以用这基底的本征态表示为其中,
c
i
=
⟨
e
i
|
ψ
⟩
{displaystyle c_{i}=langle e_{i}|psi rangle }
是复系数,是在量子态
|
e
i
⟩
{displaystyle |e_{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50假设,量子态
|
ψ
⟩
{displaystyle |psi rangle }
等于这些本征态之中的一个本征态
|
e
k
⟩
{displaystyle |e_{k}rangle }
,则对于这量子系统,测量可观察量
O
{displaystyle O}
,得到的结果必定等与本征值
O
k
{displaystyle O_{k}}
,概率为1,量子态
|
ψ
⟩
{displaystyle |psi rangle }
是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符
O
^
{displaystyle {hat {O}}}
的一个本征态。假设量子态改变为本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
,则改变为这本征态的概率为
p
i
=
|
c
i
|
2
{displaystyle p_{i}=|c_{i}|^{2}}
,测量结果是本征值
O
i
{displaystyle O_{i}}
,得到这本征值的概率也为
p
i
{displaystyle p_{i}}
。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态
|
e
i
⟩
{displaystyle |e_{i}rangle }
。将算符
O
^
{displaystyle {hat {O}}}
作用于量子态
|
ψ
⟩
{displaystyle |psi rangle }
,会形成新量子态
|
ϕ
⟩
{displaystyle |phi rangle }
:从左边乘以量子态
⟨
ψ
|
{displaystyle langle psi |}
,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量
O
{displaystyle O}
的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量
O
{displaystyle O}
的期望值是实数:对于任意量子态
|
ψ
⟩
{displaystyle |psi rangle }
,这关系都成立:根据伴随算符的定义,假设
O
^
†
{displaystyle {hat {O}}^{dagger }}
是
O
^
{displaystyle {hat {O}}}
的伴随算符,则
⟨
ψ
|
O
^
|
ψ
⟩
∗
=
⟨
ψ
|
O
^
†
|
ψ
⟩
{displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle }
。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中,
A
^
{displaystyle {hat {A}}}
、
B
^
{displaystyle {hat {B}}}
分别是可观察量
A
{displaystyle A}
、
B
{displaystyle B}
的算符。这两种算符
A
^
{displaystyle {hat {A}}}
与
B
^
{displaystyle {hat {B}}}
绝对不会有共同的基底。一般而言,
A
^
{displaystyle {hat {A}}}
的本征态与
B
^
{displaystyle {hat {B}}}
的本征态不同假设量子系统的量子态为
|
ψ
⟩
{displaystyle |psi rangle }
。对于算符
A
^
{displaystyle {hat {A}}}
,所有本征值为
a
i
{displaystyle a_{i}}
的本征态
|
α
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
c
i
=
⟨
α
i
|
ψ
⟩
{displaystyle c_{i}=langle alpha _{i}|psi rangle }
是复系数,是在量子态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于算符
B
^
{displaystyle {hat {B}}}
,所有本征值为
b
i
{displaystyle b_{i}}
的本征态
|
β
i
⟩
,
i
=
1
,
2
,
3
,
⋯
,
n
{displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n}
,形成了另外一个基底。量子态
|
ψ
⟩
{displaystyle |psi rangle }
可以表示为这组基底本征态的线性组合:其中,
d
i
=
⟨
β
i
|
ψ
⟩
{displaystyle d_{i}=langle beta _{i}|psi rangle }
是复系数,是在量子态
|
β
i
⟩
{displaystyle |beta _{i}rangle }
里找到量子态
|
ψ
⟩
{displaystyle |psi rangle }
的概率幅。:50对于量子系统的可观察量
A
{displaystyle A}
做测量,可能得到的结果是各种本征态
|
α
i
⟩
{displaystyle |alpha _{i}rangle }
的本征值
a
i
{displaystyle a_{i}}
,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为
a
i
{displaystyle a_{i}}
的概率是
|
c
i
|
2
{displaystyle |c_{i}|^{2}}
。假设测量的结果是本征值
a
j
{displaystyle a_{j}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
。假若立刻再测量可观察量
A
{displaystyle A}
,由于量子态仍旧是本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
,所得到的测量值是本征值
a
i
{displaystyle a_{i}}
概率为1。假若立刻再对本征态
|
α
j
⟩
{displaystyle |alpha _{j}rangle }
测量可观察量
B
{displaystyle B}
,则会得到统计性的答案。假设测量的结果是本征值
b
k
{displaystyle b_{k}}
,则可以推断,在测量之后短暂片刻内,量子态是本征态
|
β
k
⟩
{displaystyle |beta _{k}rangle }
。根据不确定性原理,设定
χ
=
|
⟨
[
A
^
,
B
^
]
⟩
2
i
|
{displaystyle chi =left|{frac {langle rangle }{2i}}right|}
。假设,
A
{displaystyle A}
与
B
{displaystyle B}
是两个不相容可观察量,则
χ
>
0
{displaystyle chi >0}
。而
A
{displaystyle A}
的不确定性与
B
{displaystyle B}
的不确定性的乘积
Δ
A
Δ
B
{displaystyle Delta A Delta B}
,必定大于或等于
χ
{displaystyle chi }
。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置
x
{displaystyle x}
,动量
p
{displaystyle p}
都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量
L
^
x
{displaystyle {hat {L}}_{x}}
是厄米算符。因为其中,
y
{displaystyle y}
与
z
{displaystyle z}
分别是位置的y-分量与z-分量,
p
y
{displaystyle p_{y}}
与
p
z
{displaystyle p_{z}}
分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量
L
^
y
{displaystyle {hat {L}}_{y}}
也是厄米算符。
相关
- 柄锈菌纲见内文Pucciniomycetes D.Hawksw., B.Sutton & Ainsw. (1983)柄锈菌纲(学名:Pucciniomycetes),以前曾称为锈菌纲(Urediniomycetes),是担子菌门柄锈菌亚门下一个真菌的纲。此纲包含5
- 紧张性抑郁障碍紧张性抑郁障碍(catatonia)是重性抑郁障碍的一种少见但是严重的形式,包括运动功能紊乱和其他症状,也是精神分裂症的一种常见病征。病人经常保持缄默且僵直,或者不能活动或做无目
- 约塞米蒂瀑布优胜美地瀑布(Yosemite falls),是北美洲落差最大的瀑布,位于美国加州内华达山脉,属于优胜美地国家公园,其最壮观的季节在春末,水量充沛,气势惊人。又译为约塞米蒂瀑布。 优胜美地瀑
- 冲剂冲剂是指用开水冲调即可服用的中药剂型,一般是由中草药煎熬浓缩而成。是在汤剂和糖浆剂的基础上发展出来的一种新中药剂型。
- 我思故我在“我想,所以我是”,旧译“我思故我在”(拉丁语:Cogito, ergo sum;法语:Je pense, donc je suis)是法国哲学家笛卡尔的哲学命题,又称为“笛卡尔的cogito”。印欧语系中,很多语言的系词
- 恐高症惧高症,又称恐高症和畏高症,是恐惧症的一种,指对身处一定程度以上的高度感到恐惧,症状为在高处时陷入恐慌,呼吸加速手足无措无法对周遭事物做正常反应而呆在高处下不来,除了视觉造
- 紧密连接紧密连接(Tight junction),又称闭锁小带(Zonula occludens)、封闭小带,是细胞膜共同构成一个事实上液体无法穿透的屏障的两个细胞间紧密相连的区域。它是一类只在脊椎动物中出现的
- 交换配偶交换配偶,简称换偶,是指两对以上的伴侣(婚姻关系或民事结合或同居关系)互相交换配偶进行性交,古称易内、通室。《左传·襄公二十八年》记载庆封与卢蒲嫳易内之事,清朝杜乡渔隐《野
- 阿尔波特·班杜拉阿尔波特·班杜拉(英语:Albert Bandura,1925年12月4日-),出生于加拿大Mundare,著名心理学家,以其社会学习论著称。班杜拉毕业于不列颠哥伦比亚大学 ,1951年获得爱荷华大学硕士学位,次
- 西妥昔单抗西妥昔单抗(Cetuximab),商品名尔必得舒®(Erbitux®),是美商英克隆公司(英语:ImClone Systems)和美商百时美施贵宝的专利药。西妥昔单抗是一种对抗表皮生长因子受体(EGFR)的单克隆抗体,