可观察量

✍ dations ◷ 2025-01-22 21:10:34 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量 O {displaystyle O} 是某量子系统的可观察量,其对应的量子算符 O ^ {displaystyle {hat {O}}} ,可能有很多不同的本征值 O i {displaystyle O_{i}} 与对应的本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,这些本征态 | e i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了具有正交归一性的基底::96-99其中, δ i j {displaystyle delta _{ij}} 是克罗内克函数。任何描述这量子系统的量子态 | ψ ⟩ {displaystyle |psi rangle } ,都可以用这基底的本征态表示为其中, c i = ⟨ e i | ψ ⟩ {displaystyle c_{i}=langle e_{i}|psi rangle } 是复系数,是在量子态 | e i ⟩ {displaystyle |e_{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50假设,量子态 | ψ ⟩ {displaystyle |psi rangle } 等于这些本征态之中的一个本征态 | e k ⟩ {displaystyle |e_{k}rangle } ,则对于这量子系统,测量可观察量 O {displaystyle O} ,得到的结果必定等与本征值 O k {displaystyle O_{k}} ,概率为1,量子态 | ψ ⟩ {displaystyle |psi rangle } 是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符 O ^ {displaystyle {hat {O}}} 的一个本征态。假设量子态改变为本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,则改变为这本征态的概率为 p i = | c i | 2 {displaystyle p_{i}=|c_{i}|^{2}} ,测量结果是本征值 O i {displaystyle O_{i}} ,得到这本征值的概率也为 p i {displaystyle p_{i}} 。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态 | e i ⟩ {displaystyle |e_{i}rangle } 。将算符 O ^ {displaystyle {hat {O}}} 作用于量子态 | ψ ⟩ {displaystyle |psi rangle } ,会形成新量子态 | ϕ ⟩ {displaystyle |phi rangle } :从左边乘以量子态 ⟨ ψ | {displaystyle langle psi |} ,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量 O {displaystyle O} 的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量 O {displaystyle O} 的期望值是实数:对于任意量子态 | ψ ⟩ {displaystyle |psi rangle } ,这关系都成立:根据伴随算符的定义,假设 O ^ † {displaystyle {hat {O}}^{dagger }} 是 O ^ {displaystyle {hat {O}}} 的伴随算符,则 ⟨ ψ | O ^ | ψ ⟩ ∗ = ⟨ ψ | O ^ † | ψ ⟩ {displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle } 。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中, A ^ {displaystyle {hat {A}}} 、 B ^ {displaystyle {hat {B}}} 分别是可观察量 A {displaystyle A} 、 B {displaystyle B} 的算符。这两种算符 A ^ {displaystyle {hat {A}}} 与 B ^ {displaystyle {hat {B}}} 绝对不会有共同的基底。一般而言, A ^ {displaystyle {hat {A}}} 的本征态与 B ^ {displaystyle {hat {B}}} 的本征态不同假设量子系统的量子态为 | ψ ⟩ {displaystyle |psi rangle } 。对于算符 A ^ {displaystyle {hat {A}}} ,所有本征值为 a i {displaystyle a_{i}} 的本征态 | α i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, c i = ⟨ α i | ψ ⟩ {displaystyle c_{i}=langle alpha _{i}|psi rangle } 是复系数,是在量子态 | α i ⟩ {displaystyle |alpha _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于算符 B ^ {displaystyle {hat {B}}} ,所有本征值为 b i {displaystyle b_{i}} 的本征态 | β i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了另外一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, d i = ⟨ β i | ψ ⟩ {displaystyle d_{i}=langle beta _{i}|psi rangle } 是复系数,是在量子态 | β i ⟩ {displaystyle |beta _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于量子系统的可观察量 A {displaystyle A} 做测量,可能得到的结果是各种本征态 | α i ⟩ {displaystyle |alpha _{i}rangle } 的本征值 a i {displaystyle a_{i}} ,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为 a i {displaystyle a_{i}} 的概率是 | c i | 2 {displaystyle |c_{i}|^{2}} 。假设测量的结果是本征值 a j {displaystyle a_{j}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 。假若立刻再测量可观察量 A {displaystyle A} ,由于量子态仍旧是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } ,所得到的测量值是本征值 a i {displaystyle a_{i}} 概率为1。假若立刻再对本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 测量可观察量 B {displaystyle B} ,则会得到统计性的答案。假设测量的结果是本征值 b k {displaystyle b_{k}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | β k ⟩ {displaystyle |beta _{k}rangle } 。根据不确定性原理,设定 χ = | ⟨ [ A ^ , B ^ ] ⟩ 2 i | {displaystyle chi =left|{frac {langle rangle }{2i}}right|} 。假设, A {displaystyle A} 与 B {displaystyle B} 是两个不相容可观察量,则 χ > 0 {displaystyle chi >0} 。而 A {displaystyle A} 的不确定性与 B {displaystyle B} 的不确定性的乘积 Δ A   Δ B {displaystyle Delta A Delta B} ,必定大于或等于 χ {displaystyle chi } 。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置 x {displaystyle x} ,动量 p {displaystyle p} 都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量 L ^ x {displaystyle {hat {L}}_{x}} 是厄米算符。因为其中, y {displaystyle y} 与 z {displaystyle z} 分别是位置的y-分量与z-分量, p y {displaystyle p_{y}} 与 p z {displaystyle p_{z}} 分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量 L ^ y {displaystyle {hat {L}}_{y}} 也是厄米算符。

相关

  • 内科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学内科学是临床医学的专科,几乎是所有其
  • V01-Y98ICD-10 第二十章:疾病和死亡的外因,即国际疾病与相关健康问题统计分类第十版的第二十个编码分系统(从V01-Y99),其中包括了各种关于疾病及死亡的外在原因,及其分类详情。
  • 原口动物原口动物(学名:拉丁语:Protostomia),又名前口动物或旧口动物,有完整的消化道。胚胎时期的原口会发展为成体的口,而肛门则是另外形成的。蜕皮动物(Ecdysozoa)和螺旋动物(Spiralia)都属于
  • 痤疮痤疮(英语:acne、拼音:cuó chuāng、注音:ㄘㄨㄛˊ ㄔㄨㄤ);也称为寻常性痤疮(拉丁语:acne vulgaris),在毛囊被死皮细胞和来自皮肤的油脂堵塞时出现。 它的特点是黑头或白头、疙瘩、
  • 基里巴斯面积以下资讯是以2018年估计独立日(7月12日) 圣诞节(12月25日)家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人
  • 安提西尼安提西尼(古希腊语:Ἀντισθένης,Antisthenes,前445年-前365年),或译为安提斯泰尼,古希腊哲学家,苏格拉底弟子之一。安提西尼约生于公元前445年,他的父亲也叫安提西尼(Antisthe
  • 东森新闻东森新闻台(台标标示为EBC东森新闻),是东森电视旗下的新闻频道。2018年12月,《镜周刊》报导傅崐萁在担任花莲县长任内共发包25个县府媒体采购案,然而采购案得标者皆为花莲在地媒
  • 日尔曼语族日耳曼语族是印欧语系的一支,是居住在北部欧洲日耳曼民族的语族。这一族语言有鲜明的特征,最著名的有关于辅音演变的格里姆定律。一些早期(约公元2世纪)的日耳曼语言发展出自己
  • 自主自主权(希腊语:νόμος; αὐτονομία; αὐτόνομος,英语:Autonomy,直译为“法”、“自我设置并约束自我的法律”),也称自治权、自决权,是一种广泛存在于道德、政治
  • 复合物配位化合物(英语:coordination complex),简称配合物,又称为络合物、络鹽、复合物,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为“配位