可观察量

✍ dations ◷ 2025-04-26 13:14:57 #可观察量
在物理学里,特别是在量子力学里,处于某种状态的物理系统,它所具有的一些性质,可以经过一序列的物理运作过程而得知。这些可以得知的性质,称为可观察量(observable)。例如,物理运作可能涉及到施加电磁场于物理系统,然后使用实验仪器测量某物理量的数值。在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。根据量子力学的数学表述,量子态可以用存在于希尔伯特空间的态矢量来代表,量子态的可观察量可以用厄米算符来代表。假设,物理量 O {displaystyle O} 是某量子系统的可观察量,其对应的量子算符 O ^ {displaystyle {hat {O}}} ,可能有很多不同的本征值 O i {displaystyle O_{i}} 与对应的本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,这些本征态 | e i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |e_{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了具有正交归一性的基底::96-99其中, δ i j {displaystyle delta _{ij}} 是克罗内克函数。任何描述这量子系统的量子态 | ψ ⟩ {displaystyle |psi rangle } ,都可以用这基底的本征态表示为其中, c i = ⟨ e i | ψ ⟩ {displaystyle c_{i}=langle e_{i}|psi rangle } 是复系数,是在量子态 | e i ⟩ {displaystyle |e_{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50假设,量子态 | ψ ⟩ {displaystyle |psi rangle } 等于这些本征态之中的一个本征态 | e k ⟩ {displaystyle |e_{k}rangle } ,则对于这量子系统,测量可观察量 O {displaystyle O} ,得到的结果必定等与本征值 O k {displaystyle O_{k}} ,概率为1,量子态 | ψ ⟩ {displaystyle |psi rangle } 是“确定态”。根据统计诠释,对应于可观察量的量子算符可能有很多本征值,测量结果只能是其中一个本征值,而且,每一个本征值出现的机会呈概率性。测量这个动作会将量子系统的量子态改变为对应于本征值的本征态,并且,在之后短暂片刻内,量子系统的量子态仍旧是这本征态。:106-109假设,某量子系统的量子态为测量这个动作会将量子系统的量子态改变为算符 O ^ {displaystyle {hat {O}}} 的一个本征态。假设量子态改变为本征态 | e i ⟩ {displaystyle |e_{i}rangle } ,则改变为这本征态的概率为 p i = | c i | 2 {displaystyle p_{i}=|c_{i}|^{2}} ,测量结果是本征值 O i {displaystyle O_{i}} ,得到这本征值的概率也为 p i {displaystyle p_{i}} 。在测量之后短暂片刻内,量子系统的量子态仍旧是本征态 | e i ⟩ {displaystyle |e_{i}rangle } 。将算符 O ^ {displaystyle {hat {O}}} 作用于量子态 | ψ ⟩ {displaystyle |psi rangle } ,会形成新量子态 | ϕ ⟩ {displaystyle |phi rangle } :从左边乘以量子态 ⟨ ψ | {displaystyle langle psi |} ,经过一番运算,可以得到所以,每一个本征值与其概率的乘积,所有乘积的代数和就是可观察量 O {displaystyle O} 的期望值:每一种经过测量而得到的物理量都是实数,因此,可观察量 O {displaystyle O} 的期望值是实数:对于任意量子态 | ψ ⟩ {displaystyle |psi rangle } ,这关系都成立:根据伴随算符的定义,假设 O ^ † {displaystyle {hat {O}}^{dagger }} 是 O ^ {displaystyle {hat {O}}} 的伴随算符,则 ⟨ ψ | O ^ | ψ ⟩ ∗ = ⟨ ψ | O ^ † | ψ ⟩ {displaystyle langle psi |{hat {O}}|psi rangle ^{*}=langle psi |{hat {O}}^{dagger }|psi rangle } 。因此,这正是厄米算符的定义。所以,表现可观察量的算符,都是厄米算符。:96-99假若两种可观察量的对易算符不等于0,则称这两种可观察量为“不相容可观察量”::110-112其中, A ^ {displaystyle {hat {A}}} 、 B ^ {displaystyle {hat {B}}} 分别是可观察量 A {displaystyle A} 、 B {displaystyle B} 的算符。这两种算符 A ^ {displaystyle {hat {A}}} 与 B ^ {displaystyle {hat {B}}} 绝对不会有共同的基底。一般而言, A ^ {displaystyle {hat {A}}} 的本征态与 B ^ {displaystyle {hat {B}}} 的本征态不同假设量子系统的量子态为 | ψ ⟩ {displaystyle |psi rangle } 。对于算符 A ^ {displaystyle {hat {A}}} ,所有本征值为 a i {displaystyle a_{i}} 的本征态 | α i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |alpha _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, c i = ⟨ α i | ψ ⟩ {displaystyle c_{i}=langle alpha _{i}|psi rangle } 是复系数,是在量子态 | α i ⟩ {displaystyle |alpha _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于算符 B ^ {displaystyle {hat {B}}} ,所有本征值为 b i {displaystyle b_{i}} 的本征态 | β i ⟩ , i = 1 ,   2 ,   3 ,   ⋯ , n {displaystyle |beta _{i}rangle ,quad i=1, 2, 3, cdots ,n} ,形成了另外一个基底。量子态 | ψ ⟩ {displaystyle |psi rangle } 可以表示为这组基底本征态的线性组合:其中, d i = ⟨ β i | ψ ⟩ {displaystyle d_{i}=langle beta _{i}|psi rangle } 是复系数,是在量子态 | β i ⟩ {displaystyle |beta _{i}rangle } 里找到量子态 | ψ ⟩ {displaystyle |psi rangle } 的概率幅。:50对于量子系统的可观察量 A {displaystyle A} 做测量,可能得到的结果是各种本征态 | α i ⟩ {displaystyle |alpha _{i}rangle } 的本征值 a i {displaystyle a_{i}} ,获得这些不同结果的机会具有概率性,可以表达为概率分布,结果为 a i {displaystyle a_{i}} 的概率是 | c i | 2 {displaystyle |c_{i}|^{2}} 。假设测量的结果是本征值 a j {displaystyle a_{j}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 。假若立刻再测量可观察量 A {displaystyle A} ,由于量子态仍旧是本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } ,所得到的测量值是本征值 a i {displaystyle a_{i}} 概率为1。假若立刻再对本征态 | α j ⟩ {displaystyle |alpha _{j}rangle } 测量可观察量 B {displaystyle B} ,则会得到统计性的答案。假设测量的结果是本征值 b k {displaystyle b_{k}} ,则可以推断,在测量之后短暂片刻内,量子态是本征态 | β k ⟩ {displaystyle |beta _{k}rangle } 。根据不确定性原理,设定 χ = | ⟨ [ A ^ , B ^ ] ⟩ 2 i | {displaystyle chi =left|{frac {langle rangle }{2i}}right|} 。假设, A {displaystyle A} 与 B {displaystyle B} 是两个不相容可观察量,则 χ > 0 {displaystyle chi >0} 。而 A {displaystyle A} 的不确定性与 B {displaystyle B} 的不确定性的乘积 Δ A   Δ B {displaystyle Delta A Delta B} ,必定大于或等于 χ {displaystyle chi } 。为了具体计算位置与动量的期望值,可以将量子态表现于位置空间,以位置空间的波函数来表示,使用对应的代数算符。位置 x {displaystyle x} ,动量 p {displaystyle p} 都是可观察量,它们的算符都是厄米算符:在三维空间里,角动量算符的x-分量 L ^ x {displaystyle {hat {L}}_{x}} 是厄米算符。因为其中, y {displaystyle y} 与 z {displaystyle z} 分别是位置的y-分量与z-分量, p y {displaystyle p_{y}} 与 p z {displaystyle p_{z}} 分别是动量的y-分量与z-分量。类似地,角动量算符的y-分量 L ^ y {displaystyle {hat {L}}_{y}} 也是厄米算符。

相关

  • 寄生虫寄生虫(英语:parasitic worm)指一种生物,将其一生的大多数时间居住在另外一种生物体内,且会危害被居住的生物体的生理机能,被寄居的生物则称为宿主或寄主。寄生虫会在宿主或寄主体
  • 烟草种植烟草种植是世界农业的其中一种主要作业。根据联合国粮食及农业组织(FAO)在公元2000年的统计数字,全世界现时约有420万公顷的土地用于烟草种植,年产量达7百万公吨。烟草是一种一
  • 自由基自由基(英语:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上
  • 南非南部非洲即非洲大陆南部地区,不常简称为南非,“南非”通常指南非共和国。联合国的南部非洲次分区包括下列五个国家:南部非洲除了以上五国和其他南部非洲发展共同体的国家外,有时
  • 色胺色胺是一种见于植物、动物和真菌的单胺生物碱,含有一个吲哚核,结构与色氨酸类似(缺一个羧基)并因此得名。它以痕量存在于哺乳动物脑中,有认为是起神经调质和神经递质的作用。色胺
  • 克拉斯诺达尔边疆区克拉斯诺达尔边疆区(俄语:Краснода́рский край,罗马化:Krasnodarskiy kray),位于前高加索西部、大高加索北麓,亚速海—黑海东岸,与克里米亚隔刻赤海峡相望。南面
  • 毕达哥拉斯毕达哥拉斯(希腊语:Πυθαγόρας,前570年-前495年)是一名古希腊哲学家、数学家和音乐理论家,毕达哥拉斯主义的创立者。他认为数学可以解释世界上的一切事物,对数字痴迷到几近
  • 增生性贫血增生性贫血即指血液中某种细胞增生过多引起其他细胞成分相对减少的贫血。包括三大类贫血:溶血性贫血、缺铁性贫血和巨幼细胞增生性贫血
  • 阿尔茨海默病阿尔茨海默病(拉丁语:Morbus Alzheimer、德语:Alzheimer-Krankheit、英语:Alzheimer's disease,缩写:AD),俗称早老性痴呆、老年痴呆,是一种发病进程缓慢、随着时间不断恶化的神经退化
  • 防卫省防卫省是日本国防事务的最高主管机关,主要负责掌管自卫队。前身为1950年成立的警察预备队本部,经过多次改制后,于2007年1月9日升格为省。最高首长为防卫大臣,由首相任命。防卫省