一元二次公式

✍ dations ◷ 2025-04-04 04:57:03 #一元二次公式
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如, x 2 − 3 x + 2 = 2 {displaystyle x^{2}-3x+2=2} , ( 3 − 2 i ) x 2 + 23 − 6 i π x − sin ⁡ 2 = 0 {displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0} , t 2 − 3 = 0 {displaystyle t^{2}-3=0} 等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于 x {displaystyle x} 的方程 a x 2 + b x = − c {displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即 4 a {displaystyle 4a} ,得阿贝尔指出,任意一元二次方程都可以根据 a {displaystyle a} 、 b {displaystyle b} 、 c {displaystyle c} 三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合 a ≠ 0 {displaystyle aneq 0} 的原则就可以了。把一个一元二次方程变形成一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 后,如果 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 存在两个实根 x 1 , x 2 {displaystyle x_{1},x_{2}} ,那么它可以因式分解为 a ( x − x 1 ) ( x − x 2 ) = 0 {displaystyle a(x-x_{1})(x-x_{2})=0} 。例如,解一元二次方程 x 2 − 3 x + 2 = 0 {displaystyle x^{2}-3x+2=0} 时,可将原方程左边分解成对于 a x 2 + b x + c = 0 ( a ≠ 0 ) {displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)} ,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 除以 a {displaystyle a} ( a {displaystyle a} 在一元二次方程中不为零),将会得到当 2 x y = b a x {displaystyle 2xy={frac {b}{a}}x} 时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程 a x 2 + b x + c = 0 ( 0 ) {displaystyle ax^{2}+bx+c=0left(0right)} , Δ = b 2 − 4 a c {displaystyle Delta =b^{2}-4ac} 称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根的几何意义是二次函数 y = a x 2 + b x + c {displaystyle y=ax^{2}+bx+c} 的图像(为一条抛物线)与 x {displaystyle x} 轴交点的x坐标。另外一种解法是把一元二次方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 化为 x 2 = − b a x − c a {displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}} 的形式。则方程 a x 2 + b x + c = 0 {displaystyle ax^{2}+bx+c=0} 的根,就是函数 y = x 2 {displaystyle y=x^{2}} 和 y = − b a x − c a {displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}} 交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解

相关

  • 性成瘾性成瘾(英语:Sexual addiction),也称性瘾、嗜性、性上瘾或做爱上瘾症,是一种尽管得到了负反馈,依然想要进行性活动(自慰或非直接性交)(特别是性交)的强迫行为。支持为性成瘾症建立一个
  • 新英格兰新英格兰(英语:New England),是位于美国大陆东北角、濒临大西洋、毗邻加拿大的区域。新英格兰地区包括美国的六个州,由北至南分别为:缅因州、新罕布什尔州、佛蒙特州、马萨诸塞州
  • 贫化铀贫铀,也称为贫化铀或耗乏铀或衰变铀等等,英文简写为DU,是一种主要由铀-238构成的物质,为核燃料制程中的的副产物,故也是一种核废料。自然界中的铀,含有约99.27%的铀-238、0.72%的
  • 转氨酶增高转氨酶(Transaminase)是一种催化转氨基反应的转移酶,将氨基酸的α-氨基转移到一种α-酮酸上。人体内最重要的转氨酶为谷丙转氨酶和谷草转氨酶,都是肝功能测试的重要指标。EC 1.1
  • 法拉比阿布·纳斯尔·穆罕默德·伊本·穆罕默德·塔尔汗·法拉比·伊本·乌扎克·阿勒-法拉比·阿特 突鲁克(波斯语:ابو نصر محمد بن محمد فارابي‎ Abū Na
  • 唯名论唯名论(英语:Nominalism),形而上学的观点之一,根源于古希腊柏拉图学派,经中古欧洲经院哲学家发展,长时间成为哲学探讨的主题。在哲学中,它是一种形而上学的争论,它讨论的是关于事物的
  • 约翰·乔治·特朗普约翰·乔治·特朗普(英语:John George Trump,1907年8月21日-1985年2月21日),美国物理学家、发明家,唐纳德·特朗普的叔父。本科毕业于纽约大学坦登工程学院,硕士毕业于哥伦比亚大学,
  • 世界最佳居住城市世界最佳宜居城市是指一系列的城市,因为俱有良好的生活条件,经评比依得分高低列出优异城市。目前有两个较有名的年度全球著名城市生活调查报告,分别是美世生活质素调查,以及经济
  • 玛丽二世玛丽二世(英语:Mary II,1662年4月30日-1694年12月28日),自1677年11月4日起出任奥兰治王妃,自1689年2月13日起出任英格兰、苏格兰与爱尔兰女王,至逝世时为止。玛丽的罗马天主教父亲詹
  • 瓦特福沃特福德 (英语:Waterford、爱尔兰语:Port Láirge;古诺斯语:Veðrafjǫrðr“公羊峡湾”或“大风的峡湾”;爱尔兰语:Port Láirge“多山的海岸”)是爱尔兰东南部的一座城市。位于舒