首页 >
一元二次公式
✍ dations ◷ 2025-09-06 20:27:10 #一元二次公式
一元二次方程是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。例如,
x
2
−
3
x
+
2
=
2
{displaystyle x^{2}-3x+2=2}
,
(
3
−
2
i
)
x
2
+
23
−
6
i
π
x
−
sin
2
=
0
{displaystyle left(3-2iright)x^{2}+{sqrt{23-6i}}x-sin 2=0}
,
t
2
−
3
=
0
{displaystyle t^{2}-3=0}
等都是一元二次方程。一元二次方程的一般形式是:古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。在大约公元前480年,中国人已经使用配方法求得了二次方程的正根。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是(引自婆什迦罗第二):将其转化为数学语言:解关于
x
{displaystyle x}
的方程
a
x
2
+
b
x
=
−
c
{displaystyle ax^{2}+bx=-c}在方程的两边同时乘以二次项未知数的系数的四倍,即
4
a
{displaystyle 4a}
,得阿贝尔指出,任意一元二次方程都可以根据
a
{displaystyle a}
、
b
{displaystyle b}
、
c
{displaystyle c}
三个系数,通过初等代数运算来求解。求得的解也被称为方程的根。一般来说,一元二次方程有两个解,答案需提供两个不同的数值,只要符合
a
≠
0
{displaystyle aneq 0}
的原则就可以了。把一个一元二次方程变形成一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
后,如果
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
能够较简便地分解成两个一次因式的乘积,则一般用因式分解来解这个一元二次方程。将方程左边分解成两个一次因式的乘积后(一般可用十字相乘法),分别令每一个因式等于零,可以得到两个一元一次方程。解这两个一元一次方程,得到的两个解都是原方程的解。如果一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
存在两个实根
x
1
,
x
2
{displaystyle x_{1},x_{2}}
,那么它可以因式分解为
a
(
x
−
x
1
)
(
x
−
x
2
)
=
0
{displaystyle a(x-x_{1})(x-x_{2})=0}
。例如,解一元二次方程
x
2
−
3
x
+
2
=
0
{displaystyle x^{2}-3x+2=0}
时,可将原方程左边分解成对于
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
{displaystyle ax^{2}+bx+c=0qquad left(aneq 0right)}
,它的根可以表示为:公式解可以由配方法得出。首先先将一元二次方程的一般形式
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
除以
a
{displaystyle a}
(
a
{displaystyle a}
在一元二次方程中不为零),将会得到当
2
x
y
=
b
a
x
{displaystyle 2xy={frac {b}{a}}x}
时得到公式解终于出现了:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式对于实系数一元二次方程
a
x
2
+
b
x
+
c
=
0
(
0
)
{displaystyle ax^{2}+bx+c=0left(0right)}
,
Δ
=
b
2
−
4
a
c
{displaystyle Delta =b^{2}-4ac}
称作一元二次方程根的判别式。根据判别式,一元二次方程的根有三种可能的情况:即系数为非实数时的一元二次方程,将系数扩展到复数域内,此时要注意根的判别式不适用于非实系数一元二次方程。根据韦达定理可以找出一元二次方程的根与方程中系数的关系。一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根的几何意义是二次函数
y
=
a
x
2
+
b
x
+
c
{displaystyle y=ax^{2}+bx+c}
的图像(为一条抛物线)与
x
{displaystyle x}
轴交点的x坐标。另外一种解法是把一元二次方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
化为
x
2
=
−
b
a
x
−
c
a
{displaystyle x^{2}=-{frac {b}{a}}x-{frac {c}{a}}}
的形式。则方程
a
x
2
+
b
x
+
c
=
0
{displaystyle ax^{2}+bx+c=0}
的根,就是函数
y
=
x
2
{displaystyle y=x^{2}}
和
y
=
−
b
a
x
−
c
a
{displaystyle y=-{frac {b}{a}}x-{frac {c}{a}}}
交点的X坐标。通过作图,可以得到一元二次方程根的近似值。在使用计算机解一元二次方程时,跟人手工计算相似,大部分情况下也是根据下面的公式去解
相关
- 兔热病兔热病(拉丁语:Tularemia),又称野兔病(rabbit fever)、鹿蝇热(deer fly fever)、大原病(Ohara's fever)、法兰西斯氏病,一种因为细菌感染引起的人畜共通传染病。病原为土伦病法兰西斯氏
- 斯泰茨伯勒斯泰茨伯勒({{lang-en|Statesboro)是美国佐治亚州布洛克县的县治,也是该县的最大城市。根据2010年美国人口普查,斯泰茨伯勒人口数量为28,422人。斯泰茨伯勒是斯泰茨伯勒小都市统
- 激光光谱学激光光谱学是对在激光器发明之后,使用激光作为光源来进行的原子、分子的发射光谱、吸收光谱以及非线性效应所做研究的通称。pp
- 脑下腺脑下垂体(法语、德语: Hypophyse,英语:pituitary gland,亦称为脑垂体)位于脑底部的中央位置,在蝶骨中的蝶鞍内,它的上方有视神经经过,两侧被海绵静脉窦所包围,它的底部为蝶窦及鼻咽。
- 卵母细胞卵母细胞(Oocyte)在卵子发生过程中进行减数分裂的卵原细胞。在卵细胞发育过程中,一个卵原细胞首先经过有丝分裂进行复制产生一个初级卵母细胞;随后初级卵母细胞通过减数分裂产生
- 枕叶枕叶(Occipital Lobe)是大脑皮层的一部分结构,属于哺乳动物四个脑叶之一。其已知的主要功能包括处理视觉信息,例如初级视皮层V1就位于枕叶。两个枕叶是人类脑颅皮质四对脑叶最小
- Psub2/subSsub5/sub五硫化二磷是一种无机物,分子式P4S10。五硫化二磷是一种淡黄色或灰黄色结晶,有类似硫化氢的臭味。有强吸湿性,遇水和湿空气分解放出磷酸和硫化氢。微溶于二硫化碳,溶于氢氧化钠
- 导热性热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可
- 全球军事开支这是一个各国国防预算列表,数据来自斯德哥尔摩国际和平研究所,数值都是使用美元标注。不过对先进军事科技的投资也对民生科技发展有利,借由提高本国科技可以达到把饼坐大的好处
- 泽兰省泽兰省(荷兰语:Zeeland),又依英语译作西兰省,是荷兰的一个省份。该省位于该国的西南部,主要由岛屿组成,与其邻近的省份北有南荷兰省,东连北布拉班特省,西面靠海,南与比利时接壤。其省