首页 >
似然函数
✍ dations ◷ 2024-12-22 20:21:12 #似然函数
在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“概率”(或然性)又有明确的区分:概率,用于在已知一些参数的情况下,预测接下来在观测上所得到的结果;似然性,则是用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。在这种意义上,似然函数可以理解为条件概率的逆反。在已知某个参数B时,事件A会发生的概率写作:利用贝叶斯定理,因此,我们可以反过来构造表示似然性的方法:已知有事件A发生,运用似然函数
L
(
B
∣
A
)
{displaystyle mathbb {L} (Bmid A)}
,我们估计参数B的可能性。形式上,似然函数也是一种条件概率函数,但我们关注的变量改变了:注意到这里并不要求似然函数满足归一性:
∑
b
∈
B
P
(
A
∣
B
=
b
)
=
1
{displaystyle sum _{bin {mathcal {B}}}P(Amid B=b)=1}
。一个似然函数乘以一个正的常数之后仍然是似然函数。对所有
α
>
0
{displaystyle alpha >0}
,都可以有似然函数:考虑投掷一枚硬币的实验。通常来说,已知掷出一枚“公平的硬币”(正面朝上和反面朝上的概率都为0.5), 即正面(Head)朝上的概率为
p
H
=
0.5
{displaystyle p_{H}=0.5}
,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:其中H表示正面朝上。如果一个硬币的质量分布不够均匀, 那么它可能是一枚"非公平的硬币"在统计学中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。
我们可以建立一个统计模型:假设硬币投出时会有
p
H
{displaystyle p_{H}}
的概率正面朝上,而有
1
−
p
H
{displaystyle 1-p_{H}}
的概率反面朝上。
这时,通过观察已发生的两次投掷,条件概率可以改写成似然函数:也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时,
p
H
=
0.5
{displaystyle p_{H}=0.5}
的似然性是0.25。注意,反之并不成立,即当似然函数为0.25时不能推论出
p
H
=
0.5
{displaystyle p_{H}=0.5}
。如果考虑
p
H
=
0.6
{displaystyle p_{H}=0.6}
,那么似然函数的值也会改变。如图1所示,注意到似然函数的值变大了。
这说明,如果参数
p
H
{displaystyle p_{H}}
的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设
p
H
=
0.5
{displaystyle p_{H}=0.5}
时更大。也就是说,参数
p
H
{displaystyle p_{H}}
取成0.6要比取成0.5更有说服力,更为“合理”。
总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。在这个例子中,如图1所示,似然函数实际上等于:如果取
p
H
=
1
{displaystyle p_{H}=1}
,那么似然函数达到最大值1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为1是最合理的。类似地,如果观测到的是三次投掷硬币,头两次正面朝上,第三次反面朝上,如图2所示,那么似然函数将会是:这时候,似然函数的最大值将会在
p
H
=
2
3
{displaystyle p_{H}={frac {2}{3}}}
的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率
p
H
=
2
3
{displaystyle p_{H}={frac {2}{3}}}
是最合理的。最大似然估计是似然函数最初也是最自然的应用。上文已经提到,似然函数取得最大值表示相应的参数能够使得统计模型最为合理。从这样一个想法出发,最大似然估计的做法是:首先选取似然函数(一般是概率密度函数或概率质量函数),整理之后求最大值。实际应用中一般会取似然函数的对数作为求最大值的函数,这样求出的最大值和直接求最大值得到的结果是相同的。似然函数的最大值不一定唯一,也不一定存在。与矩法估计比较,最大似然估计的精确度较高,信息损失较少,但计算量较大。似然比检验是利用似然函数来检测某个假设(或限制)是否有效的一种检验。一般情况下,要检测某个附加的参数限制是否是正确的,可以将加入附加限制条件的较复杂模型的似然函数最大值与之前的较简单模型的似然函数最大值进行比较。如果参数限制是正确的,那么加入这样一个参数应当不会造成似然函数最大值的大幅变动。一般使用两者的比例来进行比较,这个比值是卡方分配。尼曼-皮尔森引理说明,似然比检验是所有具有同等显著性差异的检验中最有统计效力的检验。
相关
- 医学伦理学医学伦理学(英语:medical ethics)是在人类以预防、医疗卫生行为、医学研究以及卫生事业管理等有关的道德现象的基础上,确立伦理学依据及其概念体系,概括出基本的伦理原则或准则、
- 抗心绞痛药抗心绞痛药(英语:Antianginal)是指任何一种用于心绞痛的药物,属于缺血性心脏病的一种症状。 可以分为三类:抗高血压药 · 利尿剂 · 血管舒张剂 · β受体阻断剂 · 钙离
- 异营生物异营生物(英语:heterotroph)指不能直接以无机物或有机物,必须摄取现成的养分来维持生存机能的生物。异营生物包括捕食、寄生和腐生三种。 异营性动物细胞需要的物质为水和矿物质
- 枞阳县.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 洛伦兹力方程在电动力学里,洛伦兹力(Lorentz force)是运动于电磁场的带电粒子所感受到的作用力。洛伦兹力是因荷兰物理学者亨德里克·洛伦兹而命名。根据洛伦兹力定律,洛伦兹力可以用方程,称
- 恩纽斯昆图斯·恩纽斯(拉丁语:Quintus Ennius,前239年-前169年)也作恩尼乌斯、埃纽斯,是罗马共和国时期的诗人、剧作家,被认为是最具影响力的早期拉丁语诗人和古罗马文学的奠基人。其代表
- 大分子高分子(Macromolecule)化合物是一个非常大的分子,如蛋白质,通常由较小的亚基(单体)的聚合产生。它们一般由数千或更多的原子组成。通过一定形式的聚合反应生成具有非常高的分子量
- 异位显性异位(上位)显性是一个基因表现与另外一个或者几个基因改变的现象。决定表现型的基因叫做“上位”,而表型与其它基因改变的基因叫做“下位”。异位(上位)显性与一般的显性不同,一般
- 梅尔·吉勃逊澳洲电影及电视美艺学院奖最佳男主角 1979年 《蒂姆》 1981年 《加里波底》 澳洲电影及电视美艺学院国际奖最佳导演 2016年 《血战钢锯岭》梅尔·科尔
- 莱茵-鲁尔都会区北莱茵-威斯特法伦莱茵-鲁尔都会区(德语:Metropolregion Rhein-Ruhr)是德国最大的都市区,拥有超过1100万人口,拥有多个中心都市。莱茵鲁尔区面积7110平方公里,位于北莱茵-威斯特法