似然函数

✍ dations ◷ 2025-04-25 04:24:08 #似然函数
在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“概率”(或然性)又有明确的区分:概率,用于在已知一些参数的情况下,预测接下来在观测上所得到的结果;似然性,则是用于在已知某些观测所得到的结果时,对有关事物之性质的参数进行估值。在这种意义上,似然函数可以理解为条件概率的逆反。在已知某个参数B时,事件A会发生的概率写作:利用贝叶斯定理,因此,我们可以反过来构造表示似然性的方法:已知有事件A发生,运用似然函数 L ( B ∣ A ) {displaystyle mathbb {L} (Bmid A)} ,我们估计参数B的可能性。形式上,似然函数也是一种条件概率函数,但我们关注的变量改变了:注意到这里并不要求似然函数满足归一性: ∑ b ∈ B P ( A ∣ B = b ) = 1 {displaystyle sum _{bin {mathcal {B}}}P(Amid B=b)=1} 。一个似然函数乘以一个正的常数之后仍然是似然函数。对所有 α > 0 {displaystyle alpha >0} ,都可以有似然函数:考虑投掷一枚硬币的实验。通常来说,已知掷出一枚“公平的硬币”(正面朝上和反面朝上的概率都为0.5), 即正面(Head)朝上的概率为 p H = 0.5 {displaystyle p_{H}=0.5} ,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:其中H表示正面朝上。如果一个硬币的质量分布不够均匀, 那么它可能是一枚"非公平的硬币"在统计学中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。 我们可以建立一个统计模型:假设硬币投出时会有 p H {displaystyle p_{H}} 的概率正面朝上,而有 1 − p H {displaystyle 1-p_{H}} 的概率反面朝上。 这时,通过观察已发生的两次投掷,条件概率可以改写成似然函数:也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时, p H = 0.5 {displaystyle p_{H}=0.5} 的似然性是0.25。注意,反之并不成立,即当似然函数为0.25时不能推论出 p H = 0.5 {displaystyle p_{H}=0.5} 。如果考虑 p H = 0.6 {displaystyle p_{H}=0.6} ,那么似然函数的值也会改变。如图1所示,注意到似然函数的值变大了。 这说明,如果参数 p H {displaystyle p_{H}} 的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设 p H = 0.5 {displaystyle p_{H}=0.5} 时更大。也就是说,参数 p H {displaystyle p_{H}} 取成0.6要比取成0.5更有说服力,更为“合理”。 总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。在这个例子中,如图1所示,似然函数实际上等于:如果取 p H = 1 {displaystyle p_{H}=1} ,那么似然函数达到最大值1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为1是最合理的。类似地,如果观测到的是三次投掷硬币,头两次正面朝上,第三次反面朝上,如图2所示,那么似然函数将会是:这时候,似然函数的最大值将会在 p H = 2 3 {displaystyle p_{H}={frac {2}{3}}} 的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率 p H = 2 3 {displaystyle p_{H}={frac {2}{3}}} 是最合理的。最大似然估计是似然函数最初也是最自然的应用。上文已经提到,似然函数取得最大值表示相应的参数能够使得统计模型最为合理。从这样一个想法出发,最大似然估计的做法是:首先选取似然函数(一般是概率密度函数或概率质量函数),整理之后求最大值。实际应用中一般会取似然函数的对数作为求最大值的函数,这样求出的最大值和直接求最大值得到的结果是相同的。似然函数的最大值不一定唯一,也不一定存在。与矩法估计比较,最大似然估计的精确度较高,信息损失较少,但计算量较大。似然比检验是利用似然函数来检测某个假设(或限制)是否有效的一种检验。一般情况下,要检测某个附加的参数限制是否是正确的,可以将加入附加限制条件的较复杂模型的似然函数最大值与之前的较简单模型的似然函数最大值进行比较。如果参数限制是正确的,那么加入这样一个参数应当不会造成似然函数最大值的大幅变动。一般使用两者的比例来进行比较,这个比值是卡方分配。尼曼-皮尔森引理说明,似然比检验是所有具有同等显著性差异的检验中最有统计效力的检验。

相关

  • 血容量减少血容量减少,亦称血容量过低、休克,指的是体内血量减少的状况。 它表现在体内血液体积收缩和脱盐上。常见的血容量减少的原因有:
  • 先天性肺部呼吸道畸形先天性肺部呼吸道畸形(congenital pulmonary airway malformation,CPAM),旧称先天性囊肿性腺瘤样畸形(congenital cystic adenomatoid malformation ,CCAM)是一种和游离肺(英语:bronc
  • 骨髓增生异常综合征骨髓增生异常综合征(英语:Myelodysplastic syndromes,简称MDS)又译为骨髓发育不良综合征、骨髓生成不良综合征、骨髓化生不良综合征,为一种因骨髓中未成熟血球不正常增生导致的血
  • 创伤后心理压力紧张综合症创伤后压力综合征(Post-traumatic stress disorder,简称PTSD,又称创伤后遗症)是指人在经历过情感、战争、交通事故等创伤事件后产生的精神疾病。其症状包括会出现不愉快的想法、
  • 辛蒂·克劳馥辛西娅·安·“辛迪”·克劳馥(英语:Cynthia Ann "Cindy" Crawford,1966年2月20日-),美国超级名模,曾是维多利亚的秘密(Victoria's Secret)的模特儿。西北大学化学系肄业。育有1子1女
  • 心血管循环系统(英语:circulatory system),也称为心血管系统(英语:cardiovascular system)或血管系统(英语:vascular system)是负责血液循环,在细胞间传送养分(如氨基酸及电解质)、氧气、二氧化
  • 品质管制质量控制(英语:quality control,缩写为 QC)是质量管理的一部分,致力于满足质量要求。中国全国科学技术名词审定委员会对质量控制的一种定义为:“为使客户确信某一物品或服务的质量
  • 从意大利南部推进意大利战役是第二次世界大战盟军深入意大利内陆及包围德军和意大利军的大规模军事行动,作战时间长达1943年到1945年战争结束;参战盟军司令部(英语:AFHQ)策划所有在地中海盟军登陆
  • 克里米亚共和国俄罗斯联邦(浅黄色)克里米亚半岛克里米亚共和国(俄语:Республика Крым,罗马化:Respublika Krym;乌克兰语:Республіка Крим;土库曼斯坦语:Respublikasy Kr
  • 陈洪渊陈洪渊(1937年-),浙江三门人,中国分析化学家,南京大学教授,生命分析化学国家重点实验室学术委员会主任。陈洪渊生于浙江省三门县悬诸上枫坑村,曾就读于台州中学。1956年,18岁的陈洪渊