偏导数

✍ dations ◷ 2024-09-20 08:44:48 #多变量微积分,导数的推广,微分算子

在数学中,一个多变量的函数的偏导数(英语:partial derivative)是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数的作用与价值在向量分析和微分几何以及机器学习领域中受到广泛认可。

函数 f {\displaystyle f} 轴(平行于xOz平面)的切线,以及垂直于轴(平行于yOz平面)的切线。

一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1)的与平面平行的切线。右图中显示了函数的图像以及这个平面。左图中显示了函数在平面 = 1上是什么样的。我们把变量视为常数,通过对方程求导,我们可以发现在点(x, y)的导数,记为:

于是在点(1, 1)的与平面平行的切线的斜率是3。

在点(1, 1),或称“在(1, 1)的关于的偏导数是3”。

函数可以解释为为自变量而为常数的函数:

也就是说,每一个的值定义了一个函数,记为,它是一个一元函数。也就是说:

一旦选择了一个的值,例如,那么(,)便定义了一个函数,把映射到2 + + 2:

在这个表达式中,是常数,而不是变量,因此是只有一个变量的函数,这个变量是。这样,便可以使用一元函数的导数的定义:

以上的步骤适用于任何的选择。把这些导数合并起来,便得到了一个函数,它描述了在方向上的变化:

这就是关于的偏导数,在这里,∂是一个弯曲的,称为偏导数符号。为了把它与字母区分,∂有时读作“der”、“del”、“dah”或“偏”,而不是“dee”。

一般地,函数(1,...,)在点(1,...,)关于的偏导数定义为:

在以上的差商中,除了以外的所有变量都是固定的。这个固定值的选择决定了一个一元函数 f a 1 , , a i 1 , a i + 1 , , a n ( x i ) = f ( a 1 , , a i 1 , x i , a i + 1 , , a n ) {\displaystyle f_{a_{1},\ldots ,a_{i-1},a_{i+1},\ldots ,a_{n}}(x_{i})=f(a_{1},\ldots ,a_{i-1},x_{i},a_{i+1},\ldots ,a_{n})} (例如R2或R3)上的标量值函数(1,...)。在这种情况下,关于每一个变量具有偏导数∂/∂。在点,这些偏导数定义了一个向量:

这个向量称为在点的梯度。如果在定义域中的每一个点都是可微的,那么梯度便是一个向量值函数∇,它把点映射到向量∇()。这样,梯度便决定了一个向量场。

一个常见的符号滥用是在欧几里得空间R3中用单位向量 i ^ , j ^ , k ^ {\displaystyle \mathbf {\hat {i}} ,\mathbf {\hat {j}} ,\mathbf {\hat {k}} } 维欧几里得空间R 的坐标(x1, x2, x3,...,x)和单位向量( e ^ 1 , e ^ 2 , e ^ 3 , , e ^ n {\displaystyle \mathbf {{\hat {e}}_{1}} ,\mathbf {{\hat {e}}_{2}} ,\mathbf {{\hat {e}}_{3}} ,\dots ,\mathbf {{\hat {e}}_{n}} } ;它与高度和半径有以下的关系:

关于的偏导数为:

                                                                      V                                                    r                                      =                                            2              π              r              h                        3                                {\displaystyle {\frac {\partial V}{\partial r}}={\frac {2\pi rh}{3}}}  关于的偏导数为:

                                                                      V                                                    h                                      =                                            π                              r                                  2                                                      3                                {\displaystyle {\frac {\partial V}{\partial h}}={\frac {\pi r^{2}}{3}}}  关于和的全导数。它们分别是:

以及

现在假设,由于某些原因,高度和半径的比需要是固定的:

这便给出了关于的全导数:

可以化简为:

类似地,关于的全导数是:

含有未知函数的偏导数的方程,称为偏微分方程,它在物理学、工程学,以及其它应用科学中经常会见到。

与关于和二者相关的全导数是由雅可比矩阵给出的,它的形式为梯度向量 V = ( V r , V h ) = ( 2 3 π r h , 1 3 π r 2 ) {\displaystyle \nabla V=({\frac {\partial V}{\partial r}},{\frac {\partial V}{\partial h}})=({\frac {2}{3}}\pi rh,{\frac {1}{3}}\pi r^{2})} 为、和的函数。

的一阶偏导数为:

二阶偏导数为:

二阶混合偏导数为:

高阶偏导数为:

当处理多变量函数时,有些变量可能互相有关,这样就需要明确指定哪些变量是固定的。在诸如统计力学的领域中,关于的偏导数,把和视为常数,通常记为:

像导数一样,偏导数也是定义为一个极限。设为R的一个开子集, : → R是一个函数。我们定义在点 = (1, ..., ) ∈ 关于第个变量的偏导数为:

即使在某个给定的点,所有的偏导数∂/∂()都存在,函数仍然不一定在该点连续。然而,如果所有的偏导数在的一个邻域内存在并连续,那么在该邻域内完全可微分,且全导数是连续的。在这种情况下,我们称是一个C1函数。

偏导数 f x {\displaystyle {\frac {\partial f}{\partial x}}} 内的另外一个函数,并可以再次求偏导数。如果所有的混合二阶偏导数在某个点(或集合)连续,我们便称为在该点(或集合)的一个C2函数;在这种情况下,根据克莱罗定理,偏导数可以互相交换:

相关

  • 日本国宪法政治主题《日本国宪法》,又被称为《和平宪法》、《战后宪法》,是日本现行宪法,在1946年11月3日公布、1947年5月3日起施行。该宪法是日本政府在二战战败投降之后的盟军占领时期
  • 大写字母大写字母或大写体是许多拼音字母的其中一种写体形式,例如A, B, C等。大写体有时又称做上层字盘体(uppercase)。因为西方在过去活字印刷体期,凡大写字体都会放在检字抽屉的上层,故
  • 尼罗河尼罗河(英语:Nile,阿拉伯语:النيل‎,埃及语:Ḥ'pī / iteru,科普特语:ⲫⲓⲁⲣⲟ / phiaro)是一条流经非洲东部与北部的河流,与中非地区的刚果河以及西非地区的尼日尔河并列非洲
  • C-DNAC-DNA又称C型DNA,是一种DNA双螺旋型态,目前已知C-DNA与B-DNA(自然界最常见的DNA型态)有相似的构象。会出现于含锂离子,且湿度较低的状态下。研究显示,B与C两型的DNA实际上都含有两
  • 海尔蒙特扬·巴普蒂斯塔·范·海尔蒙特(Jan Baptista van Helmont,1579年1月12日-1644年12月30日;姓又译范赫蒙),弗拉芒化学家、生理学家、医生。他将四元素说中的四种元素削减为水和空气,
  • 明清战争抚清之战 · 萨尔浒之战 · 开铁之战 · 辽沈之战 · 镇江之战 · 林畔之战 · 广宁之战 · 辽南之战 · 亮马佃大捷 · 牛毛大捷 · 乌鸡关大捷 · 横
  • BONESBONES(株式会社ボンズ)是日本的一家动画工作室,由于旗下一些较高水准的动画作品,而受到业内外瞩目。其代表作有《钢之炼金术师》、《交响诗篇》、《狼雨》、《樱兰高校男公关部
  • 蒙阴县蒙阴县位于山东省中部偏南,山东省临沂市西北部,因位于蒙山(古称东山)之阴(北面)而得名,是临沂市下辖县。地跨东经117°45′—118°15′,北纬35 °27′—36°02′,南北最大长距65.4公
  • 欧德姆布拉欧德姆布拉(Audhumla),在北欧神话中,他是最早出现在世上的生物。当世界之初只有金伦加(Ginunaga)鸿沟,在鸿沟之南是穆斯贝尔海姆(Muspelheim),是个充满火焰的地方;在鸿沟之北是尼福尔海
  • 事件 (概率论)在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多