Z-矩阵

✍ dations ◷ 2024-12-23 11:02:16 #计算化学,分子建模

在化学中,Z-矩阵(英语:Z-matrix)是表示由原子构成的系统的一种方式。 Z矩阵有时也被称为内坐标(英语:internal coordinate representation)。它提供了分子中每个原子的原子序数,键长,键角和二面角(即所谓的内部坐标)的描述。然而Z -矩阵并非总能提供化学键相关的信息,因为矩阵本身是基于描述空间中原子取向的一系列向量的。但是Z-矩阵仍是一种对键长,键角和二面角等性质的方便表示,毕竟它能保留实际的键连关系。Z -矩阵这个名字来源于生成Z -矩阵时将第一个原子与第二个原子的连线设为Z轴这一规则。

Z-矩阵可以与笛卡尔坐标系相互转换,但是空间中的位置和方向却不同。尽管从概念上讲转换是简单易懂的,但是进行转换的算法在速度,数值精度和并行度上却有很大差异。这一点很重要,因为高分子链(例如聚合物,蛋白质和DNA)可以具有成千上万个相连的原子,并且沿该链连续相距很远,这些原子在笛卡尔空间中可能很近(因此,较小的舍入误差可能会累积成不可忽视的力场误差)从扭转空间到笛卡尔空间转换的最佳最快和最精确的数字算法是自然扩展参考系方法。从笛卡尔角到扭转角的反向转换是简单的三角函数,并且没有累积误差的风险。

在许多分子建模和计算化学程序中,Z-矩阵用于为分子系统创建输入文件。熟练选择内部坐标可以使结果的解释简单明了。另外,由于Z矩阵包含的分子连接性信息(虽然并不总是包含此信息)可以用于更有根据地猜测初始的黑塞矩阵,一些量子化学计算(比如结构优化)可以因此而加快速度。目前,Z矩阵通常是首选的分子表示法,因为这可以通过将某些角度设置为常数来对分子(或其部分)强制添加对称性。 Z矩阵只是以相对方式放置原子位置的一种表示形式,具有明显的便利性,即Z矩阵中使用的向量对应于化学键。一个概念上的陷阱是假设所有键在Z矩阵中都显示为一条线,这是不正确的。例如:在像苯这样的环状分子中,Z矩阵将不会包含环中的所有六个键,因为所有六个原子的位置仅在记录5个键之后就唯一确定,从而使第6个多余。

以下是一个甲烷分子的笛卡尔坐标表示

C     0.000000     0.000000     0.000000H     0.000000     0.000000     1.089000H     1.026719     0.000000    -0.363000H    -0.513360    -0.889165    -0.363000H    -0.513360     0.889165    -0.363000

我们把坐标轴稍微旋转,可以得到如下对称性更明显的坐标

C     0.000000     0.000000     0.000000H     0.628736     0.628736     0.628736H    -0.628736    -0.628736     0.628736H    -0.628736     0.628736    -0.628736H     0.628736    -0.628736    -0.628736

进而,以碳原子为原点,我们可以构建如下Z-矩阵

CH   1 1.089000H   1 1.089000  2  109.4710H   1 1.089000  2  109.4710  3  120.0000H   1 1.089000  2  109.4710  3 -120.0000

其中H 1 1.089000 表示此H原子离第一个原子的距离为1.089000, H 1 1.089000 2 109.4710表示此H原子离第一个原子的距离为1.089000且与1,2号原子所成键角为109.4710度,H 1 1.089000 2 109.4710 3 120.0000表示此H原子离第一个原子的距离为1.089000且与1,2号原子所成键角为109.4710度,且与1,2,3号原子所成二面角为120度。

相关

  • 呈缴本法定送存,即法律规定团体和个人将所发表的出版物呈缴至国家图书馆或其他指定的处所。需要法定送存的出版物一般为书籍和期刊,但有时也会包括其他媒体(例如录音)等。不同国家对需
  • X染色体相关淋巴组织增生2型X连锁淋巴细胞增生性疾病(X-linked lymphoproliferative disease),又名邓肯病(Duncan's disease):86或珀蒂洛综合征(Purtilo syndrome),是一种淋巴增生性障碍(英语:lymphoproliferativ
  • 等温等压系综等温等压系综是正则系综的推广,是统计力学系综的一种。正如其名,这个系综对应于具有恒定温度和压强的体系。每个系综内的体系可以和其他体系进行能量和体积交换。但系综内各体
  • 摩洛哥阿拉伯语摩洛哥阿拉伯语在摩洛哥被称为达里贾(الدارجة‎ ,即“方言”),是阿拉伯语变体马格里布阿拉伯语的一支,主要分布于摩洛哥。摩洛哥阿拉伯语因历史原因受柏柏尔语、拉丁语、
  • 梵语文学古典梵语诗歌一段可以分作“大诗”(Mahakavya)和“小诗”(khandakavya)两大类。“大诗”指的是叙事诗,“小诗”指的是抒情诗。古典梵语叙事诗导源于两大史诗,特别是《罗摩衍那
  • 霍隆武 (钮祜禄氏)霍隆武(1790年代约1793年-1853年),钮祜禄氏,满洲镶红旗人,福州驻防。由前锋中武举。道光五年,委署前锋校。道光十年,升正黄旗骁骑校。道光十六年,迁正红旗防御。道光十七年,升正白旗二
  • 红玉伊月红玉伊月(本名:紅玉 いづき,1984年-),日本作家,红玉伊月是其笔名。石川县金泽市出身。金泽大学文学部毕业。以《角鸮与夜之王》得到第13回电击小说大奖的大赏。在电击文库中是罕见
  • 阿尔特维希斯哈根湖坐标:53°42′19″N 13°49′41″E / 53.70528°N 13.82801°E / 53.70528; 13.82801阿尔特维希斯哈根湖(德语:Altwigshagener See),是德国的湖泊,位于该国东北部,由梅克伦堡-前波
  • 夏琳·高卓灵夏琳·E·高卓灵(英语:Charlene E. Cothran),前女同志杂志 《Venus》出版人,曾经出柜,前同性恋权益活跃份子,后来脱离同性恋,及成为基督徒。自小在基督教家庭长大的高卓灵在8岁时被
  • 陈邦鋆陈邦鋆(英语:Chen Bang Jun,艺名Andie Tan,1985年6月16日-)是一位生于新加坡的演员及模特儿。参加《才华横溢出新秀》夺得冠军而在新加坡电视圈立足,并首度参演电视剧《沸腾冰点》