首页 >
浮点数
✍ dations ◷ 2025-09-03 04:25:54 #浮点数
在计算机科学中,浮点(英语:floating point,缩写为FP)是一种对于实数的近似值数值表现法,由一个有效数字(即尾数)加上幂数来表示,通常是乘以某个基数的整数次指数得到。以这种表示法表示的数值,称为浮点数(floating-point number)。利用浮点进行运算,称为浮点计算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。计算机使用浮点数运算的主因,在于电脑使用二进位制的运算。例如:4÷2=2,4=100(2)、2=010(2),在二进制相当于退一位数。则1.0÷2=0.5=0.1(2)也就是
1
2
{displaystyle {frac {1}{2}}}
。依此类推二进制的0.01(2)就是十进制
1
2
2
{displaystyle {frac {1}{2^{2}}}}
=
1
4
{displaystyle {frac {1}{4}}}
=0.25。由于十进位制无法准确换算成二进位制的部分小数,如0.1,因此只能使用近似值的方式表达。这种表示方法类似于基数为10的科学记数法,在计算机上,通常使用2为基数的幂数来表示。一个浮点数a由两个数m和e来表示:a = m × be。在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。如果m的第一位是非0整数,m称作正规化的。有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。e是指数。这种表示法的设计,来自于对于值的表现范围,与精密度之间的取舍:可以在某个固定长度的存储空间内表示出某个实数的近似值。例如,一个指数范围为±4的4位十进制浮点数可以用来表示43210,4.321或0.0004321,但是没有足够的精度来表示432.123和43212.3(必须近似为432.1和43210)。当然,实际使用的位数通常远大于4。此外,浮点数表示法通常还包括一些特别的数值:+∞和−∞(正负无穷大)以及NaN('Not a Number')。无穷大用于数太大而无法表示的时候,NaN则指示非法操作或者无法定义的结果。其中,无穷大,可表示为inf,在内存中的值是阶码为全1,尾数全0。而NaN在内存中的值则是阶码全1,尾数不全0。浮点指的是带有小数的数值,浮点运算即是小数的四则运算,常用来测量电脑运算速度。大部分计算机采用二进制(b=2)的表示方法。位(bit)是衡量浮点数所需存储空间的单位,通常为32位或64位,分别被叫作单精度和双精度。有一些计算机提供更大的浮点数,例如英特尔公司的浮点运算单元Intel8087协处理器(以及其被集成进x86处理器中的后代产品)提供80位长的浮点数,用于存储浮点运算的中间结果。还有一些系统提供128位的浮点数(通常用软件实现)。在电脑使用的浮点数被电气电子工程师协会(IEEE)规范化为IEEE 754。π的值可以表示为π = 3.1415926...10(十进制)。当在一个支持17位尾数的计算机中表示时,它会变为0.11001001000011111 × 22。由于浮点数不能表达所有实数,浮点运算与相应的数学运算有所差异,有时此差异极为显著。比如,二进制浮点数不能表达0.1和0.01,0.1的平方既不是准确的0.01,也不是最接近0.01的可表达的数。单精度(24比特)浮点数表示0.1的结果为
e
=
−
4
{displaystyle e=-4}
,
s
=
110011001100110011001101
(
2
)
{displaystyle s=110011001100110011001101_{(2)}}
,即此数的平方是但最接近0.01的可表达的数是浮点数也不能表达圆周率
π
{displaystyle pi }
,所以
tan
π
2
{displaystyle tan {frac {pi }{2}}}
不等于正无穷,也不会溢出。下面的C语言代码的计算结果为16331239353195370.0,如果用单精度浮点数,则结果为−22877332.0。同样的,
sin
π
≠
0
{displaystyle sin pi neq 0}
。由于浮点数计算过程中丢失了精度,浮点运算的性质与数学运算有所不同。浮点加法和乘法不符合结合律和分配律。Intel Pentium CPU早期的60-100MHz P5版本在浮点运算单元有一个问题,在极少数情况下,会导致除法运算的精确度降低。这个缺陷于1994年被发现,变成如今广为人知的Pentium FDIV bug,同时这一事件导致Intel陷入巨大的窘态,创建召回项目来回收有问题的处理器。
相关
- 伊本·西那阿布·阿里·侯赛因·本·阿卜杜拉·本·哈桑·本·阿里·本·西那(阿拉伯文:أبو علي الحسين بن عبد الله بن الحسن بن علي بن سينا
- 健那绿B健那绿B(英语:Janus Green B),又名詹纳斯绿B,简称健那绿或詹纳斯绿,是一种对线粒体专一的活体染料,具有脂溶性,能跨过细胞膜,有染色能力的基团带正电,结合在负电性性的线粒体内膜上,内
- 词义对词义(word sense)最简单的解释就是词的含义或意义。它是人们对一个词所称呼的事物、现象、关系的概括认识。词义的语言功能,就是确定词和所称呼的事物之间的联系。词义还具有
- 球面度球面度(steradian,符号:sr)是立体角的国际单位。它可算是三维的弧度。其英文字是希腊语“立体”(stereos)和弧度(radian)的混合,另一常见的中文翻译为立弪。以r为半径的球的中心为顶
- 分类级别在生物分类法中,分类级别(英语:taxonomic rank)是在分类学等级制度中的层次 (相对位置)。每一个级别之下包含了若干不够普遍的分类。物种和属这两个级别是最基本的,除此之外的级
- 内阁制议会制又称内阁制、议会民主制(英语:Parliamentary system),是一种政治制度,特点是“议会无上”,政府首脑(总理或首相)权力来自议会,授权有两种途径:第一是议会改选后的多数议席支持,第
- 伦勃朗伦勃朗·哈尔曼松·范·莱因(荷兰语:Rembrandt Harmenszoon van Rijn;荷兰语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI
- HIO次碘酸(HIO)是用氧化汞与碘水混合时制得的。它很不稳定,迅速发生歧化反应:活泼的次碘酸盐可由碱金属氢氧化物与碘单质反应制得。它们也能迅速歧化成碘化物和碘酸盐。理论上次碘
- 双层脂膜磷脂双分子层(英语:lipid bilayer 或phospholipid bilayer)是由两层磷脂分子组成的薄膜。 几乎所有细胞生物的细胞膜和许多病毒的包膜都主要由磷脂双分子层构成,此外,核被膜和
- 乳房纤维腺瘤纤维腺瘤(英语:Fibroadenoma)是从乳房小叶组织中生长出来,混和上皮与间质组织的肿瘤,发生率为18~20%,好发于年轻女性,为女性最常见的良性乳房疾病,通常没有其他征候。与乳癌典型症状不