实函数

✍ dations ◷ 2025-04-26 15:53:48 #函数

实函数(Real function),指定义域和值域均为实数集的子集的函数。实函数的特性之一是可以在坐标平面上画出图形。

一个实函数 是一个把实数(一般以 表示)映射到另一实数(函数的值,一般以 () 表示)的函数。换句话说,实函数是一个函数 f : X R {\displaystyle f:X\to \mathbb {R} } 的实函数 和任一 的子集 ,可定义 的限制函数 |。其定义域为 而对所有 的元素,函数的取值维持不变。若 是 的真子集,这两个函数理论上并不相同,但往往可将两者视为等同。

相反,有时函数的定义域可透过解析延拓或利用函数的连续性扩大。由此可见,明确指出实函数的未必有明显价值。

函数 的值域是指当 可取定义域内任何值时,() 所有可能取值的集合。若 是连续实函数而其定义域是一个区间,那么它的值域也会是一个区间(除非 是常数函数,此时其值域将是一点)。

对任何实数 ,方程 =() 所有实数解的集合称为 的原像。

实函数之间的运算可如下定义:

由此,所有定义于全部实数和所有定义于某一特定区间的实函数分别组成 R {\displaystyle \mathbb {R} } 可定义 1 / f : x 1 / f ( x ) {\displaystyle 1/f:x\mapsto 1/f(x)} ()=0 的 值,它不一定等于 的定义域,所以上述代数结构不构成一个体。

相关

  • H[AuBrsub4/sub]溴金酸,又称四溴合金酸,是一种无机化合物,化学式为HAuBr4。它类似于氯金酸。它可由氢溴酸和硝酸的混酸与金属金反应制得。
  • 上艾瑟尔上艾瑟尔省(荷兰语:Overijssel)是荷兰东部的一个省,首府兹沃勒,人口1,109,250人(2006年)。该省与德国接壤上艾瑟尔省早期名为上艾瑟尔领地,当时整个疆域包含现在的德伦特省,1336年是
  • 灰树花多糖蕈伞平版状灰树花(学名:Grifola frondosa),又名舞菇、贝叶多孔菌、云蕈、栗子蘑、栗蘑、千佛菌、莲花菌、甜瓜板、奇果菌、叶奇果菌,日本《今昔物语集》中记载野生灰树花有轻微毒
  • 16号染色体16号染色体是人类23对染色体中的一对,正常人拥有2条16号染色体。16号染色体缠绕了约9000万碱基对(构筑DNA的材料),并包含了人类细胞中约3%的DNA。辨识染色体上的基因是遗传学研
  • 指标化石指准化石(英语:Index fossils,又称为标准化石、指标化石)是指一种可以被用来推知所处地层的地质年代之化石。其运作原理基于一个前提上:虽然沉积物可能会因为沉积时所处的环境不
  • 森特理克森特理克(Centrica plc)是一家总部位英国伯克郡温莎的跨国能源公司,主要业务为给英国和北美国家提供电力和天然气,此外也有开采天然气的业务。1997年创建,森特理克已在伦敦证券交
  • 调频电台调频广播(英语:Frequency Modulation Broadcast,常缩写为FM广播)是一种以频率调制技术来传送高保真声音的无线电广播技术,由爱德温·霍华·阿姆斯壮(Edwin Howard Armstrong)发明。
  • 克鲁兹拉斐尔·爱德华·“特德”·克鲁兹(英语:Rafael Edward "Ted" Cruz,1970年12月22日-),美国重量级政治人物,生于加拿大,毕业于哈佛法学院,现任得州联邦参议员、科学与太空委员会主席,曾
  • 白足鼠属白足鼠属(),哺乳纲、啮齿目、仓鼠科的一属,而与白足鼠属(球鹿鼠)同科的动物尚有里约稻鼠属(里约稻鼠)、叶耳鼠属(沙叶耳鼠)、洞鼠属(粗毛洞鼠)、大耳攀鼠属(大耳攀鼠)等之数种哺乳动物。
  • 王圩王圩(1937年12月25日-),中国半导体光电子学专家。生于河北文安。1960年毕业于北京大学物理系半导体物理专业。中国科学院半导体研究所研究员。1997年当选为中国科学院院士。