大数定律

✍ dations ◷ 2025-11-30 15:45:57 #大数定律
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中 X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , ... 是独立同分布、期望值 E ⁡ ( X 1 ) = E ⁡ ( X 2 ) = ⋯ = μ {displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu } 且皆勒贝格可积的随机变量构成的无穷序列。 X j {displaystyle X_{j}} 的勒贝格可积性意味着期望值 E ⁡ ( X j ) {displaystyle operatorname {E} (X_{j})} 存在且有限。方差 Var ⁡ ( X 1 ) = Var ⁡ ( X 2 ) = ⋯ = σ 2 < ∞ {displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty } 有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设 a 1 ,   a 2 ,   …   ,   a n ,   … {displaystyle a_{1}, a_{2}, dots , a_{n}, dots } 为相互独立的随机变量,其数学期望为: E ⁡ ( a i ) = μ ( i = 1 ,   2 ,   … ) {displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )} ,方差为: Var ⁡ ( a i ) = σ 2 ( i = 1 ,   2 ,   … ) {displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列 a ¯ = 1 n ∑ i = 1 n a i {displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}} 依概率收敛于 μ {displaystyle mu } (即收敛于此数列的数学期望 E ( a i ) {displaystyle E(a_{i})} )。换言之,在定理条件下,当 n {displaystyle n} 无限变大时, n {displaystyle n} 个随机变量的算术平均将变成一个常数。设在 n {displaystyle n} 次独立重复伯努利试验中, 事件 X {displaystyle X} 发生的次数为 n x {displaystyle n_{x}} 。 事件 X {displaystyle X} 在每次试验中发生的总体概率为 p {displaystyle p} 。 n x n {displaystyle {frac {n_{x}}{n}}} 代表样本发生事件 X {displaystyle X} 的频率。大数定律可用概率极限值定义: 则对任意正数 ε > 0 {displaystyle varepsilon >0} ,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。 定理以严格的数学形式表达了频率的稳定性。 就是说当 n {displaystyle n} 很大时,事件发生的频率于总体概率有较大偏差的可能性很小。

相关

  • 螨传播螨(英语:mite, 音mán)是一种八足生物,是蜘蛛的近亲。螨的体形极小,必须借助显微镜观察。螨又可分为尘螨(dust mite)与农业螨,其中农业螨又有叶螨(spider mite)、拟叶螨(false spider mi
  • 医患关系医患关系、医病关系(英文:Doctor-Patient Relationship)是指医生和病人之间的互动,在现代医学伦理的概念中,是医生与病人之间的信赖合作之基础。大多数医生从实习开始,甚至是进入
  • 主义撒切尔主义是英国政治家玛格丽特·撒切尔的一套经济、社会、政策主张,也可描述她本人的行事风格。撒切尔夫人在1975年至1990年间任保守党党首,并在1979年至1990年担任英国首相
  • TNF通路细胞凋亡(英语:apoptosis,源自希腊语:απόπτωσις,有“堕落、死亡”之意),为一种细胞程序性死亡。相对于细胞坏死(necrosis),细胞凋亡是细胞主动实施的。细胞凋亡一般由生理或
  • HSVHSV可以指:
  • 陈定信陈定信(1943年7月6日-),非博士出身的国立台湾大学医学院院长,一路从医师做到医学院院长,为中央研究院院士,并于2005年获选为美国国家科学院外籍院士。陈定信早年跟随宋瑞楼教授研究
  • 地藏菩萨地藏菩萨(梵语:क्षितिगर्भ Kṣitigarbha),佛教菩萨之一,音译为“乞叉底蘗婆”,因其“安忍不动如大地,静虑深密如秘藏”而得名。又因其发有‘众生度尽、方证菩提;地狱不空
  • 白米白米,又称粘米,是稻米经过精制后的一种米。由于白米在加工过程中经过精磨、去掉大米外层部分等程序,白米的营养价值要低于其它粗制米。不过在历史上,就口感与香味而言,绝大多数人
  • 日本裔日裔中国人或在华日本人,是指具有日本血统,取得中国国籍的人。二次大战期间日本计划向满洲国与内蒙移民500万。在这十年中,生活在满洲国和日本占领的中国地区的日本国民由46000
  • 剩磁剩磁(Remanence)符号为Br,是指磁体经磁化至饱和以后,撤去外磁场,在原来外磁场方向上仍能保持一定的磁化强度。剩磁的极限值为饱和磁化强度。永磁材料的剩磁主要受材料中各个晶粒