大数定律

✍ dations ◷ 2025-09-19 16:15:21 #大数定律
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中 X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , ... 是独立同分布、期望值 E ⁡ ( X 1 ) = E ⁡ ( X 2 ) = ⋯ = μ {displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu } 且皆勒贝格可积的随机变量构成的无穷序列。 X j {displaystyle X_{j}} 的勒贝格可积性意味着期望值 E ⁡ ( X j ) {displaystyle operatorname {E} (X_{j})} 存在且有限。方差 Var ⁡ ( X 1 ) = Var ⁡ ( X 2 ) = ⋯ = σ 2 < ∞ {displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty } 有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设 a 1 ,   a 2 ,   …   ,   a n ,   … {displaystyle a_{1}, a_{2}, dots , a_{n}, dots } 为相互独立的随机变量,其数学期望为: E ⁡ ( a i ) = μ ( i = 1 ,   2 ,   … ) {displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )} ,方差为: Var ⁡ ( a i ) = σ 2 ( i = 1 ,   2 ,   … ) {displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列 a ¯ = 1 n ∑ i = 1 n a i {displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}} 依概率收敛于 μ {displaystyle mu } (即收敛于此数列的数学期望 E ( a i ) {displaystyle E(a_{i})} )。换言之,在定理条件下,当 n {displaystyle n} 无限变大时, n {displaystyle n} 个随机变量的算术平均将变成一个常数。设在 n {displaystyle n} 次独立重复伯努利试验中, 事件 X {displaystyle X} 发生的次数为 n x {displaystyle n_{x}} 。 事件 X {displaystyle X} 在每次试验中发生的总体概率为 p {displaystyle p} 。 n x n {displaystyle {frac {n_{x}}{n}}} 代表样本发生事件 X {displaystyle X} 的频率。大数定律可用概率极限值定义: 则对任意正数 ε > 0 {displaystyle varepsilon >0} ,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。 定理以严格的数学形式表达了频率的稳定性。 就是说当 n {displaystyle n} 很大时,事件发生的频率于总体概率有较大偏差的可能性很小。

相关

  • 底物底物(英语:substrate)在生物化学领域指参与生化反应的物质,可为化学元素、分子或化合物,经酶作用可形成产物。一个生化反应的底物往往同时也是另一个化学反应的产物。
  • 静脉血液外周血是指不包括骨髓的血液,医学临床上会把骨髓中的造血干细胞释放到血液中,再从这些血液中分离,得到造血干细胞,这个过程中得到的干细胞被称为周边血干细胞 ,在二十一世纪初人
  • 寡突胶质细胞寡突胶质细胞(Oligodendrocyte)是一种神经胶质细胞,最早由西班牙医学家皮奥·戴尔·里奥·霍尔特加(英语:Pío del Río Hortega)于1921年报导。寡突胶质细胞的主要功能是在中枢神
  • 甲硫氨酸腺苷转移酶甲硫氨酸腺苷转移酶(英语:Methionine adenosyltransferase)是一种催化甲硫氨酸与ATP合成S-腺苷甲硫氨酸(SAM)的酶。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21
  • 通风柜通风柜,又称排气柜、排烟柜、抽风柜、抽烟橱、烟橱或通风橱,是实验室,特别是化学实验室的一种大型设备。用途是减少实验者和有害气体的接触。工作原理是经抽风机,把实验时所产生
  • 辛克纳吉罗夫·马丁·辛克纳吉(德语:Rolf Martin Zinkernagel,1944年1月6日-),出生于瑞士巴塞尔城市州里恩,瑞士生物学家,澳洲勋章获得者,苏黎世大学实验免疫学教授。1975年自澳洲国立大学(ANU
  • 爱德华六世爱德华六世(英语:Edward VI;1537年10月12日-1553年7月6日),英格兰与爱尔兰国王,1547年1月28日即位,同年2月20日加冕时仅九岁。他是亨利八世和珍·西摩的儿子,为都铎王朝第三任君主,也
  • abbr class=abbr title=R24: 与皮肤接触将导致中毒R24/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
  • 林峯正林峯正(1965年-),台湾律师、公众人物,是前中国国民党籍立法委员林时机之子,现任不当党产处理委员会主任委员,曾任国家安全会议咨询委员,为首位进入中央政府部会任职的时代力量党员。
  • 后王朝后期埃及是古埃及本土统治者在位的最后一个兴盛时期。在第三中间期,埃及陆续受努比亚第25王朝及崛起的新亚述帝国统治,地方总督普萨美提克一世与672年建立起第二十六王朝,定都