风险决策

✍ dations ◷ 2025-11-09 18:13:05 #风险,决策论

风险决策在决策论范畴内指决策者知道环境状态出现的概率的决策。这些概率可能客观可知(如乐透、轮盘赌)或依据主观估计(例如基于历史数据)。

风险决策 也就是通常所说的 不确定条件下的决策(德语:Entscheidung unter Unsicherheit). 当人们虽然知道有哪些可能的环境状态,但却并不知道具体每种环境状态的概率时,同时把环境的进入概率看作风险, 即存在 未知条件下的决策(德语:Entscheidung unter Ungewissheit),

风险决策可以通过一个矩阵来表示决策问题: 决策者可以选择采取不同的行动 a i {\displaystyle a_{i}} , 每个行动和可能出现的不同的状况 s j {\displaystyle s_{j}} 相对应产生不同的结果 e i j {\displaystyle e_{ij}} . 出现不同状况的概率 w j {\displaystyle w_{j}} 为已知, 那么则有: 0 w j 1 {\displaystyle 0\leq w_{j}\leq 1} j w j = 1 {\displaystyle \sum _{j}w_{j}=1} 成立.

在风险决策时可以采用以下几种原则:

贝叶斯原则 也被称作μ-原则. 决策者只根据期望值做出决策.

因为只有每个选项的期望值 a i {\displaystyle a_{i}} 被评估, 所以决策者的风险偏好是中性的, 例如他对参加有50%机会赢1元钱和50%机会输1元钱的游戏的态度是中性的. 在前面例子里决策者为中性,当: e 11 {\displaystyle e_{11}} * w 1 {\displaystyle w_{1}} + e 12 {\displaystyle e_{12}} * w 2 {\displaystyle w_{2}} + e 13 {\displaystyle e_{13}} * w 3 {\displaystyle w_{3}} = 100 (一个和概率 w j {\displaystyle w_{j}} 无关的保险的"支付"), 也可以是: 120* w 1 {\displaystyle w_{1}} + 80* w 2 {\displaystyle w_{2}} + 100* w 3 {\displaystyle w_{3}} . 无差别也可以表现为等概率分布, 当存在: w 1 {\displaystyle w_{1}} = w 2 {\displaystyle w_{2}} = w 3 {\displaystyle w_{3}} = 1 3 {\displaystyle {\frac {1}{3}}} .

圣彼得堡悖论的例子显示了 , 仅考虑期望值并不能正确反映人们在真实情况下做出的决策行为:

一个决策者如果只根据期望值做出决策, 将会决定为参加游戏支付公平的价格, 也就是期望值 (他对于参加与不参加应该是恰好中性的):

期望值计算如下:

那么 E(X) = 1 2 2 + 1 4 4 + . . . + 1 2 n 2 n {\displaystyle {1 \over 2}*2+{1 \over 4}*4+...+{\frac {1}{2^{n}}}*2^{n}} + ... = 1 + 1 + ... + 1 + ... 也就是无穷大.

但是,事实上没有人肯为这个游戏支付无穷多的钱.

在 μ-σ-原则 里,决策者既考虑风险的偏好又考虑标准差. 风险中性的决策者对应于贝叶斯原则, 一个选项 a i {\displaystyle a_{i}} 对于风险回避型(厌恶风险)决策者的吸引力随着它的标准差的递增而递减, 而对于风险偏爱型的决策者则正好相反.

一种可能μ-σ-原则的形式的例子:

当α < 0 时: 决策者为风险偏爱型, 一个σ更高的选项,将比一个有着相同期望值μ但较低σ的选项优先. 当 α > 0 时: 决策者为风险回避型, 一个σ较低的选项,将比一个有着相同期望值μ但较高σ的选项优先. 当α = 0 则等价于贝叶斯原则, 决策者为风险中性, 标准差σ将不会影响决策.

μ-σ-原则应用的前提是未来利润呈正态分布或者决策者有一个二次的效用函数.

在应用 伯努利原则时,结果矩阵 e i j {\displaystyle e_{ij}} 必须先通过一个风险效用函数转化为效用值. 独立的风险效用函数 u ( e i j ) {\displaystyle u(e_{ij})} 反映了一个决策者的风险偏好. 一个风险回避型的决策者的风险效用函数, 是一个凸函数, 而一个凹函数 则表示决策者是风险偏爱型. 但是一个风险效用函数既存在凸区间也存在凹区间也是可能的. 例如在实践中可以观察到, 人们既买彩票(风险偏爱), 又买 保险(风险回避).

风险效用函数值被最大化.

相关

  • 效能效能(英语:efficacy),又称为内在活性(英语:Intrinsic activity,缩写IA)在药理学中指药物在受体上能产生的最大反应。这和药物与受体的结合亲和性不同,也和测量效价强度的EC50不同。19
  • 淋巴组织淋巴(英语:Lymph)也称胡豆液,是由组织液渗入毛细淋巴管后形成。淋巴是组织液回流的辅助渠道,参与维持机体的组织液平衡。淋巴是人体免疫系统的重要组成成分,当淋巴流经淋巴结的时
  • 物理教育物理教育是全世界的中学和大学教育的一个重要组成部分。许多综合大学都拥有物理专业。由于物理学是自然科学和工程技术的基础学科,因此物理也是取得科学和工程学位的必修课程
  • 塞拉皮斯塞拉比斯(拉丁语:Serapis、古希腊语:Σάραπις)或译塞拉皮斯(波西杰克森译塞瑞比斯)是希腊化时代的埃及神祇,是一个希腊-埃及复合神。公元前3世纪,托勒密王朝的法老托勒密一世
  • 大流士一世大流士一世(古波斯楔形文字:
  • 葡萄糖淀粉酶葡萄糖淀粉酶是一种酸性的单链外切型糖苷水解酶,不仅能催化淀粉水解为葡萄糖,还能从淀粉糖链的非还原末端 (即不可以形成半缩醛的羟基) 切下葡萄糖分子。葡萄糖淀粉酶目前已在
  • 巴德利工作记忆模型巴德利工作记忆模型(英文:Baddley's model of working memory)是艾伦·巴德利(Alan Baddeley)(英语:Alan Baddeley)和格雷厄姆·希奇(Graham Hitch)(英语:Graham_Hitch)在1974年提出
  • 指或指头(英语:digit)是很多脊椎动物的肢的尽头部分。对人类同其他灵长类动物而言,可以分做手指同脚趾两大类。人类的指分为手指及脚趾
  • 阿蒂尔·德·戈比诺阿蒂尔·德·戈比诺(法语:Arthur de Gobineau,常被称为戈比诺伯爵 le comte de Gobineau 1816年7月14日-1882年10月13日)法国贵族、小说家。生于法国阿夫赖城,逝世于意大利都灵。
  • 蔡河立蔡河立(英语:Leslie Chai,1975年9月3—),本名蔡珂立,马来西亚男演员,出生于马来西亚霹雳州怡保。