风险决策

✍ dations ◷ 2025-12-11 00:41:47 #风险,决策论

风险决策在决策论范畴内指决策者知道环境状态出现的概率的决策。这些概率可能客观可知(如乐透、轮盘赌)或依据主观估计(例如基于历史数据)。

风险决策 也就是通常所说的 不确定条件下的决策(德语:Entscheidung unter Unsicherheit). 当人们虽然知道有哪些可能的环境状态,但却并不知道具体每种环境状态的概率时,同时把环境的进入概率看作风险, 即存在 未知条件下的决策(德语:Entscheidung unter Ungewissheit),

风险决策可以通过一个矩阵来表示决策问题: 决策者可以选择采取不同的行动 a i {\displaystyle a_{i}} , 每个行动和可能出现的不同的状况 s j {\displaystyle s_{j}} 相对应产生不同的结果 e i j {\displaystyle e_{ij}} . 出现不同状况的概率 w j {\displaystyle w_{j}} 为已知, 那么则有: 0 w j 1 {\displaystyle 0\leq w_{j}\leq 1} j w j = 1 {\displaystyle \sum _{j}w_{j}=1} 成立.

在风险决策时可以采用以下几种原则:

贝叶斯原则 也被称作μ-原则. 决策者只根据期望值做出决策.

因为只有每个选项的期望值 a i {\displaystyle a_{i}} 被评估, 所以决策者的风险偏好是中性的, 例如他对参加有50%机会赢1元钱和50%机会输1元钱的游戏的态度是中性的. 在前面例子里决策者为中性,当: e 11 {\displaystyle e_{11}} * w 1 {\displaystyle w_{1}} + e 12 {\displaystyle e_{12}} * w 2 {\displaystyle w_{2}} + e 13 {\displaystyle e_{13}} * w 3 {\displaystyle w_{3}} = 100 (一个和概率 w j {\displaystyle w_{j}} 无关的保险的"支付"), 也可以是: 120* w 1 {\displaystyle w_{1}} + 80* w 2 {\displaystyle w_{2}} + 100* w 3 {\displaystyle w_{3}} . 无差别也可以表现为等概率分布, 当存在: w 1 {\displaystyle w_{1}} = w 2 {\displaystyle w_{2}} = w 3 {\displaystyle w_{3}} = 1 3 {\displaystyle {\frac {1}{3}}} .

圣彼得堡悖论的例子显示了 , 仅考虑期望值并不能正确反映人们在真实情况下做出的决策行为:

一个决策者如果只根据期望值做出决策, 将会决定为参加游戏支付公平的价格, 也就是期望值 (他对于参加与不参加应该是恰好中性的):

期望值计算如下:

那么 E(X) = 1 2 2 + 1 4 4 + . . . + 1 2 n 2 n {\displaystyle {1 \over 2}*2+{1 \over 4}*4+...+{\frac {1}{2^{n}}}*2^{n}} + ... = 1 + 1 + ... + 1 + ... 也就是无穷大.

但是,事实上没有人肯为这个游戏支付无穷多的钱.

在 μ-σ-原则 里,决策者既考虑风险的偏好又考虑标准差. 风险中性的决策者对应于贝叶斯原则, 一个选项 a i {\displaystyle a_{i}} 对于风险回避型(厌恶风险)决策者的吸引力随着它的标准差的递增而递减, 而对于风险偏爱型的决策者则正好相反.

一种可能μ-σ-原则的形式的例子:

当α < 0 时: 决策者为风险偏爱型, 一个σ更高的选项,将比一个有着相同期望值μ但较低σ的选项优先. 当 α > 0 时: 决策者为风险回避型, 一个σ较低的选项,将比一个有着相同期望值μ但较高σ的选项优先. 当α = 0 则等价于贝叶斯原则, 决策者为风险中性, 标准差σ将不会影响决策.

μ-σ-原则应用的前提是未来利润呈正态分布或者决策者有一个二次的效用函数.

在应用 伯努利原则时,结果矩阵 e i j {\displaystyle e_{ij}} 必须先通过一个风险效用函数转化为效用值. 独立的风险效用函数 u ( e i j ) {\displaystyle u(e_{ij})} 反映了一个决策者的风险偏好. 一个风险回避型的决策者的风险效用函数, 是一个凸函数, 而一个凹函数 则表示决策者是风险偏爱型. 但是一个风险效用函数既存在凸区间也存在凹区间也是可能的. 例如在实践中可以观察到, 人们既买彩票(风险偏爱), 又买 保险(风险回避).

风险效用函数值被最大化.

相关

  • 故障树分析故障树分析(FTA)是由上往下的演绎式失效分析法,利用布林逻辑组合低阶事件,分析系统中不希望出现的状态。故障树分析主要用在安全工程以及可靠度工程的领域,用来了解系统失效(英语:f
  • 日环食日食(英语:Solar eclipse),又称日蚀,是一种天文现象,属于食的一种,只在月球运行至太阳与地球之间时发生。这时,对地球上的部分地区来说,月球位于太阳前方,因此来自太阳的部分或全部光
  • 入侵种入侵物种是引进物种的一个子集。如果一个物种经人为引入一个其先前不曾自然生存的地区,并有能力在无更多人为干预的情况下在当地发展成一定数量,以至威胁到当地的生物多样性,成
  • 制作公司下面列出的日本动画工作室介绍于过去和现在的组织类似的艺术家工作室,但主要致力于动画及动画电影的生产和销售。这些工作室可能是实际的生产设施或企业实体。这些企业会在国
  • 德克萨斯共和国英语及西班牙语(de facto)德克萨斯共和国(1836年-1845年,清徐继畬于1844年所著《瀛寰志略》中译作得撒),又译得克萨斯共和国或德萨斯共和国,亦称孤星共和国,于1836年自墨西哥独立出来
  • 硫化亚铁硫化亚铁(化学式:FeS)是铁(II)的硫化物,标准状态下为黑褐色难溶于水的六方晶系晶体,具有非计量性质。它易被空气氧化,生成高价的铁氧化物(如四氧化三铁)和硫。粉末状的硫化亚铁会发
  • 戊醇戊醇为含有五个碳原子的饱和一元醇类,分子式C5H11OH,可以指下列化合物之一:
  • 亨利·卡西尼亚历山大·亨利·加布里埃尔·德卡西尼(Alexandre Henri Gabriel de Cassini,1781年5月9日-1832年4月16日)法国植物学家,其父亲让-多尼米克·德·卡西尼是一位天文学家,巴黎天文台
  • 长谷川千代乃长谷川千代乃(日语:長谷川 チヨノ/はせがわ チヨノ ,日语:長谷川チヨノ,1896年11月20日-2011年12月2日),日本长寿女性,超级人瑞,去世时享寿115岁12天。在2010年5月2日知念蒲去世后,她成
  • SHINE/Ride on《SHINE / Ride on》是韩国男子团体东方神起在日本发行的第13张单曲。于2007年9月19日由rhythm zone公司发行。单曲分为“CD+DVD 初回限定盘”“CD ONLY 通常盘”两种版本发