风险决策

✍ dations ◷ 2025-11-30 19:43:31 #风险,决策论

风险决策在决策论范畴内指决策者知道环境状态出现的概率的决策。这些概率可能客观可知(如乐透、轮盘赌)或依据主观估计(例如基于历史数据)。

风险决策 也就是通常所说的 不确定条件下的决策(德语:Entscheidung unter Unsicherheit). 当人们虽然知道有哪些可能的环境状态,但却并不知道具体每种环境状态的概率时,同时把环境的进入概率看作风险, 即存在 未知条件下的决策(德语:Entscheidung unter Ungewissheit),

风险决策可以通过一个矩阵来表示决策问题: 决策者可以选择采取不同的行动 a i {\displaystyle a_{i}} , 每个行动和可能出现的不同的状况 s j {\displaystyle s_{j}} 相对应产生不同的结果 e i j {\displaystyle e_{ij}} . 出现不同状况的概率 w j {\displaystyle w_{j}} 为已知, 那么则有: 0 w j 1 {\displaystyle 0\leq w_{j}\leq 1} j w j = 1 {\displaystyle \sum _{j}w_{j}=1} 成立.

在风险决策时可以采用以下几种原则:

贝叶斯原则 也被称作μ-原则. 决策者只根据期望值做出决策.

因为只有每个选项的期望值 a i {\displaystyle a_{i}} 被评估, 所以决策者的风险偏好是中性的, 例如他对参加有50%机会赢1元钱和50%机会输1元钱的游戏的态度是中性的. 在前面例子里决策者为中性,当: e 11 {\displaystyle e_{11}} * w 1 {\displaystyle w_{1}} + e 12 {\displaystyle e_{12}} * w 2 {\displaystyle w_{2}} + e 13 {\displaystyle e_{13}} * w 3 {\displaystyle w_{3}} = 100 (一个和概率 w j {\displaystyle w_{j}} 无关的保险的"支付"), 也可以是: 120* w 1 {\displaystyle w_{1}} + 80* w 2 {\displaystyle w_{2}} + 100* w 3 {\displaystyle w_{3}} . 无差别也可以表现为等概率分布, 当存在: w 1 {\displaystyle w_{1}} = w 2 {\displaystyle w_{2}} = w 3 {\displaystyle w_{3}} = 1 3 {\displaystyle {\frac {1}{3}}} .

圣彼得堡悖论的例子显示了 , 仅考虑期望值并不能正确反映人们在真实情况下做出的决策行为:

一个决策者如果只根据期望值做出决策, 将会决定为参加游戏支付公平的价格, 也就是期望值 (他对于参加与不参加应该是恰好中性的):

期望值计算如下:

那么 E(X) = 1 2 2 + 1 4 4 + . . . + 1 2 n 2 n {\displaystyle {1 \over 2}*2+{1 \over 4}*4+...+{\frac {1}{2^{n}}}*2^{n}} + ... = 1 + 1 + ... + 1 + ... 也就是无穷大.

但是,事实上没有人肯为这个游戏支付无穷多的钱.

在 μ-σ-原则 里,决策者既考虑风险的偏好又考虑标准差. 风险中性的决策者对应于贝叶斯原则, 一个选项 a i {\displaystyle a_{i}} 对于风险回避型(厌恶风险)决策者的吸引力随着它的标准差的递增而递减, 而对于风险偏爱型的决策者则正好相反.

一种可能μ-σ-原则的形式的例子:

当α < 0 时: 决策者为风险偏爱型, 一个σ更高的选项,将比一个有着相同期望值μ但较低σ的选项优先. 当 α > 0 时: 决策者为风险回避型, 一个σ较低的选项,将比一个有着相同期望值μ但较高σ的选项优先. 当α = 0 则等价于贝叶斯原则, 决策者为风险中性, 标准差σ将不会影响决策.

μ-σ-原则应用的前提是未来利润呈正态分布或者决策者有一个二次的效用函数.

在应用 伯努利原则时,结果矩阵 e i j {\displaystyle e_{ij}} 必须先通过一个风险效用函数转化为效用值. 独立的风险效用函数 u ( e i j ) {\displaystyle u(e_{ij})} 反映了一个决策者的风险偏好. 一个风险回避型的决策者的风险效用函数, 是一个凸函数, 而一个凹函数 则表示决策者是风险偏爱型. 但是一个风险效用函数既存在凸区间也存在凹区间也是可能的. 例如在实践中可以观察到, 人们既买彩票(风险偏爱), 又买 保险(风险回避).

风险效用函数值被最大化.

相关

  • 非线性声学非线性声学与线性声学相对,研究的是声波在运动非线性和介质非线性无法忽略的情况下的声学现象。在非线性声学中,会出现许多新现象。
  • 苏云金杆菌苏云金芽孢杆菌(学名:Bacillus thuringiensis,专著中简称为Bt),又称苏力菌,是革兰氏阳性的,芽孢杆菌属陆生习性的细菌。另外, 苏云金芽孢杆菌可寄生在一些蛾类和蝶类的幼虫上,甚至
  • 布兰岱市布兰太尔(英语:Blantyre)是马拉维的最大城市,南部区首府、布兰太尔县县治,最高法院所在地,2003年人口646,235。该城是马拉维的工商业中心,城内有奇莱卡机场,通往南非和其他非洲国家
  • 西门子通信诺基亚网络(Nokia Networks),旧名诺基亚西门子通信(Nokia Siemens Networks),是一个电信解决方案供应商,原本由西门子公司的通讯集团(Siemens COM,不包括企业业务Enterprise单位)与诺
  • 109<< 100101102103104105106107108109>> 109是108与110之间的自然数。
  • 亚当·维尔乔赫亚当·维尔乔赫(波兰语:Adam Andrzej Wiercioch,1980年11月1日-)生于格利维采,是一名波兰男子击剑运动员,主攻重剑。他曾参加2008年夏季奥林匹克运动会,在男子团体重剑项目上获得一
  • 马丁·洛克利马丁·洛克利 (英语:Martin Lockley, 1950年-) 是一位英国古生物学家。1950年出生在海峡群岛,成长在彭布罗克郡。父亲是英国自然学家罗纳德·洛克利,1960年代搬去英格兰,后毕业于
  • 阿恩·邓肯阿恩·斯塔基·邓肯(英语:Arne Starkey Duncan,1964年11月6日-)是第9任美国教育部长,以前是芝加哥公立学校的主管。他父亲Starkey Duncan是一名芝加哥大学的心理学教授,他母亲Susan
  • 褐多孔菌褐多孔菌,属多孔菌科一种,是木栖腐生的中小型菇类。该菇类生长于如台湾等地之低中海拔林区,生长期间约是在春夏两季之间。
  • 碳氧碳氧�离子(或氧碳�离子)是一类在中心sp2-杂化的碳原子上连有氧取代基,并且能够在中心碳原子和氧原子之间通过Π键离域分散所携带的正电荷的化学物种。 碳氧�离子可以用两个共振极