首页 >
安培定律
✍ dations ◷ 2025-04-03 10:56:53 #安培定律
安培定律(英语:Ampère's circuital law),又称安培环路定律,是由安德烈-玛丽·安培于1826年提出的一条静磁学基本定律。安培定律表明,载流导线所载有的电流,与磁场沿着环绕导线的闭合回路的路径积分,两者之间的关系为其中,
C
{displaystyle mathbb {C} }
是环绕着导线的闭合回路,
B
{displaystyle mathbf {B} }
是磁场(又称为B场),
d
ℓ
{displaystyle mathrm {d} {boldsymbol {ell }}}
是微小线元素矢量,
μ
0
{displaystyle mu _{0}}
是磁常数,
I
enc
{displaystyle I_{text{enc}}}
是闭合回路
C
{displaystyle mathbb {C} }
所围住的电流。1861年,詹姆斯·麦克斯韦又将这方程重新推导一遍,使得符合电动力学条件,并且发表结果于论文《论物理力线》内。麦克斯韦认为,含时电场会生成磁场,假若电场含时间,则前述安培定律方程不成立,必须加以修正。经过修正后,新的方程称为麦克斯韦-安培方程,是麦克斯韦方程组中的一个方程,以积分形式表示为其中,
S
{displaystyle mathbb {S} }
是边缘为
C
{displaystyle mathbb {C} }
的任意曲面,
J
{displaystyle mathbf {J} }
是穿过曲面
S
{displaystyle mathbb {S} }
的电流的电流密度,
D
{displaystyle mathbf {D} }
是电势移,
d
a
{displaystyle mathrm {d} mathbf {a} }
是微小面元素矢量。载流循环所产生的磁场方向可以使用右手定则来判断。其方法为将拇指外的四根手指向手掌弯的方向视为磁场方向,则拇指所指的方向即为电流的方向。右手定则也可以用来辨明一条电线四周磁场的方向。对于这用法,右手定则称为“安培右手定则”,或“安培定则”。如右图,安培右手定则表明,假若将右手的大拇指朝着电线的电流方向指去,再将四根手指握紧电线,则四根手指弯曲的方向为磁场的方向。安培定律的历史原版形式,连结了磁场与源电流。这定律可以写成两种形式,积分形式和微分形式。根据开尔文-斯托克斯定理(即ℝ³上的斯托克斯公式),对于任意矢量
F
{displaystyle mathbf {F} }
,所以,这两种形式是等价的。电流
I
{displaystyle I}
在一个曲面
S
{displaystyle mathbb {S} }
上的通量,等于磁场
B
{displaystyle mathbf {B} }
沿着
S
{displaystyle mathbb {S} }
的边缘闭合回路
C
{displaystyle mathbb {C} }
的路径积分。采用国际单位制(后面会讲述CGS单位制版本),原版安培定律的积分形式可以写为:请注意到这方程有些模糊之处,需要特别澄清:安培定律可由毕奥-萨伐尔定律和磁场的叠加性证明(请参阅毕奥-萨伐尔定律)。在静磁学中,安培定律的角色与高斯定律在静电学的角色类似。当系统组态具有适当的对称性时,我们可以利用这对称性,使用安培定律来便利地计算磁场。例如,当计算一条直线的载流导线或一个无限长螺线管的磁场时,可以采用圆柱坐标系来匹配系统的圆柱对称性。根据开尔文-斯托克斯定理,这方程也可以写为微分形式。只有当电场不含时间的时候,也就是说,当电场对于时间的偏微分等于零的时候,这方程才成立。采用国际单位制,这方程表示为磁场
B
{displaystyle mathbf {B} }
的旋度等于(产生该磁场的)传导电流密度
J
{displaystyle mathbf {J} }
。电流可以细分为自由电流和束缚电流,而束缚电流又可分类为磁化电流和电极化电流。以方程表示,总电流密度
J
{displaystyle mathbf {J} }
是其中,
J
f
{displaystyle mathbf {J} _{f}}
是自由电流密度或传导电流密度,
J
M
{displaystyle mathbf {J} _{M}}
是磁化电流密度,
J
P
{displaystyle mathbf {J} _{P}}
是电极化电流密度。从微观而言,所有的电流基本上是一样的。但是,由于实用原因,物理学家会将电流分类为自由电流和束缚电流,对于每一类电流有不同的处理方式。例如,束缚电流通常发生于原子尺寸。物理学家或许想要使用较简单但适用于较大尺寸状况的理论。因此,较微观的安培定律,以B场
B
{displaystyle mathbf {B} }
和微观电流(包括自由电流和束缚电流)来表达的定律,有时候会被替代为等价的形式,以附属磁场(又称为H场)
H
{displaystyle mathbf {H} }
和自由电流来表达的形式。后面证明段落,会有详细的关于自由电流和束缚电流的定义,与两种表述等价的证明。通常在教科书内所提及的单独的“电流”二字,都是指的自由电流,即自由载流子(电子及阴阳离子)的定向移动。例如,通过一条导线或一个电池的电流。自由电流与后面提到的束缚电流明显不同,后者出现于可以被磁化或电极化的宏观物质里(每一种物质都会或多或少地被电极化或磁化)。当一个物质被磁化的时候(例如,将此物质置入外磁场),电子仍旧会束缚于它们所属的原子。但是,它们的物理行为会有所改变(会与感受到的磁场耦合),产生微观电流。将这些电流总合在一起,会有如同宏观电流一般的效应,环绕于磁化物体内部或表面。称这电流为磁化电流,是束缚电流的一部分。称磁化电流的密度为“体磁化电流密度”
J
M
{displaystyle mathbf {J} _{M}}
,用方程定义为其中,
M
{displaystyle mathbf {M} }
是磁化强度(单位体积的磁偶极矩)。束缚电流的另外一种来源是电极化电流。感受到电场的作用,可电极化物质内的正束缚电荷和负束缚电荷会以原子距离相互分离。假设电场随着时间而变化,束缚电荷也会随着时间而移动,因而产生“电极化电流”,称其密度为“电极化电流密度”
J
P
{displaystyle mathbf {J} _{P}}
,用方程定义为其中,
P
{displaystyle mathbf {P} }
是电极化强度。注意到电极化强度的定义式其中,
ρ
b
{displaystyle rho _{b}}
是“体束缚电荷密度”。取电极化电流密度的散度:所以,电极化电流密度与体束缚电荷密度的关系为原版安培定律只适用于静磁学。在电动力学里,当物理量含时间,有些细节必须仔细检查。思考安培方程,其中,
B
{displaystyle mathbf {B} }
是B场,
μ
0
{displaystyle mu _{0}}
是磁常数,
J
{displaystyle mathbf {J} }
是总电流。取散度于这方程,则会得到应用一个矢量恒等式,旋度的散度必定等于零。所以,这意味着电流密度的散度等于零:在静磁学内,这是正确的。但是,出了静磁学范围,当电流不稳定的时候,这就不一定正确了。举个经典例子,如图右,一个正在充电的电容器,其两片金属板会随着时间分别累积异性电荷。设定表面
L
{displaystyle mathbb {L} }
的边缘为闭合回路
C
{displaystyle mathbb {C} }
。应用安培定律,在这里,
I
enc
{displaystyle I_{text{enc}}}
是通过任意曲面的电流,只要这曲面符合一个条件:边缘为闭合回路
C
{displaystyle mathbb {C} }
。所以,这任意曲面可以是表面
L
{displaystyle mathbb {L} }
,而
I
enc
{displaystyle I_{text{enc}}}
是
I
{displaystyle I}
;或者这任意曲面可以是封闭圆柱表面减去左边表面
S
−
L
{displaystyle mathbb {S} -mathbb {L} }
,而由于通过这任意曲面的电流是
0
{displaystyle 0}
,
I
enc
{displaystyle I_{text{enc}}}
是
0
{displaystyle 0}
。选择不同的曲面会得到不同的答案,这在物理学里,是绝对不允许发生的事。为了解决上述难题,安培定律必须加以修改延伸。应用流体力学的方法,麦克斯韦摹想磁场为电介质涡旋(vortex)大海,而位移电流即为大海内的电极化电流。在他于1861年发表的论文《论物理力线》里面,麦克斯韦将位移电流项目加入了安培定律。在自由空间内,位移电流跟电场随着时间的变化率有关;而在电介质内,上述贡献仍旧存在,但另外一个重要贡献则与电介质的电极化有关。虽然电荷不能自由地运动于电介质,感受到外电场的作用,分子的束缚电荷可以做微小的运动。因此,正值和负值的束缚电荷会产生小距离的分离,造成电极化的增加,这可以用变量电极化强度
P
{displaystyle P}
来表达。电极化强度随着时间的变化所产生的效应就是电极化电流。位移电流密度
J
D
{displaystyle mathbf {J} _{D}}
定义为其中,
D
{displaystyle mathbf {D} }
是电势移,定义为其中,
ε
0
{displaystyle varepsilon _{0}}
是电常数,
P
{displaystyle mathbf {P} }
是电极化强度。所以,位移电流密度分为两个部分:这方程右手边的第一个项目是麦克斯韦修正项目,在任何地方都可存在,甚至在真空也可以存在。麦克斯韦修正项目并不涉及任何真实的电荷运动,但是,它描述一个含时电场的物理行为,就好像是真实的电流。第二个项目是电极化电流密度,与电介质内单独分子的极化性有关。将麦克斯韦修正项目加入安培方程:或者,使用H场
H
{displaystyle mathbf {H} }
和位移电流
D
{displaystyle mathbf {D} }
来表达,这就是麦克斯韦-安培方程,可以补救原本安培定律的限制。假若使用B场
B
{displaystyle mathbf {B} }
的麦克斯韦-安培方程,由于习惯,时常会称
ε
0
∂
E
∂
t
{displaystyle varepsilon _{0}{frac {partial mathbf {E} }{partial t}}}
项目为位移电流密度。由于增添了位移电流,麦克斯韦能够推论(正确地)光波是一种电磁波(请参阅电磁波条目)。等价于方程注意到只处理微分形式,而不处理积分形式。但这已足够了。因为,根据开尔文-斯托克斯定理,微分形式等价于积分形式。回想电势移的定义式为还有,
H
{displaystyle mathbf {H} }
的定义式为将这两个定义式代入H场
H
{displaystyle mathbf {H} }
的麦克斯韦-安培方程,经过一番运算,可以得到稍加整理,即可得到磁场
B
{displaystyle mathbf {B} }
的麦克斯韦-安培方程采用CGS单位制,安培方程的积分形式,包括麦克斯韦修正项目,可以写为其中,
c
{displaystyle c}
是光速。其微分形式可以写为
相关
- 蚱蜢总科:蚤蝼总科Tridactyloidea总科:区蚱总科Tetrigoidea总科:蜢总科Eumastacoidea总科:牛蝗总科Pneumoroidea总科:锥头蝗总科Pyrgomorphoidea总科:蝗总科Acridoidea总科:长角
- 麦地那龙线虫麦地那龙线虫病,又名几内亚线虫病(GWD),是龙线虫感染所引发的疾病。人类饮用不洁净的水后,如果水中含有感染了龙线虫幼虫的水蚤,就会受到感染。患者起初没有症状。大约一年后,母虫
- 行为遗传学行为遗传学研究领域集中在检视遗传在人类和动物的行为中扮演的角色。行为遗传学涵盖多个学科,包括生物学,遗传学,动物行为学,心理学,统计学,并且经常会涉及到“先天与后天”的讨论
- 四号德尔塔-4运载火箭是德尔塔系列运载火箭的一个型号,由波音综合国防系统集团(IDS)设计,由位在阿拉巴马州迪凯特的联合发射同盟(United Launch Alliance)所建造。在最后一次位于联合
- 猴总科猴科(学名:Cercopithecidae),即旧世界猴,灵长目的一科,是与猿类最接近的猴,也是我们最为熟悉的一类灵长目动物。今天主要分布在非洲和亚洲的广大地区,也分布于欧洲极少部分地区。猴
- 透纳约瑟夫·玛罗德·威廉·特纳(英语:Joseph Mallord William Turner,1775年4月23日-1851年12月19日),简称J·M·W·特纳(J. M. W. Turner)或威廉·特纳(William Turner),又译透纳,英国浪漫
- 葫芦素葫芦素(英语:Cucurbitacin)是一类生物化学复合物中的任何一种,某些植物-尤其是葫芦科(Cucurbitaceae)的成员,其包括普通的南瓜和葫芦-生产并用作对食草动物的防御。葫芦素在化学上
- 麦茶大麦茶,又称为麦茶,日本称麦茶,是流行于东亚的一种茶饮料。大麦茶在欧美也作为咖啡的替代饮品。大麦茶是将大麦焙煎,再磨成粉末而制成的饮料。日本昭和前期称这种饮料为麦汤,意指
- 高雄银行高雄银行(简称高银),是台湾大型商业银行之一,1982年1月13日成立。前身是高雄市银行,为一所由高雄市政府掌控的银行。与京城银行为台湾唯二总行设于南台湾之银行。
- 网状结构网状结构(脑干网状系统)(英语:Reticular Formation)是脑部涉及到例如觉醒/睡眠循环等动作的部分,并可以过滤进入的刺激以区分无关的背景刺激。这对于高等生物控制一些身体基本功能