基尔霍夫电路定律

✍ dations ◷ 2025-06-07 21:27:32 #物理定律,电路,电路定理,电压

基尔霍夫电路定律(Kirchhoff Circuit Laws)简称为基尔霍夫定律,指的是两条电路学定律,基尔霍夫电流定律与基尔霍夫电压定律。它们涉及了电荷的守恒及电势的保守性。1845年,古斯塔夫·基尔霍夫首先提出基尔霍夫电路定律。现在,这定律被广泛地应用于电气工程学。

从麦克斯韦方程组可以推导出基尔霍夫电路定律。但是,基尔霍夫并不是依循这条思路发展,而是从格奥尔格·欧姆的工作成果加以推广得之。

基尔霍夫电流定律又称为基尔霍夫第一定律,表明:

或者,更详细描述,

以方程表达,对于电路的任意节点,

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流,是流过与这节点相连接的第 k {\displaystyle k} 个支路的电流,可以是实数或复数。

由于累积的电荷(单位为库仑)是电流(单位为安培)与时间(单位为秒)的乘积,从电荷守恒定律可以推导出这条定律。其实质是稳恒电流的连续性方程,即根据电荷守恒定律,流向节点的电流之和等于流出节点的电流之和。

思考电路的某节点,跟这节点相连接有 n {\displaystyle n} 个支路。假设进入这节点的电流为正值,离开这节点的电流为负值,则经过这节点的总电流 i {\displaystyle i} 等于流过支路 k {\displaystyle k} 的电流 i k {\displaystyle i_{k}} 的代数和:

将这方程积分于时间,可以得到累积于这节点的电荷的方程:

其中, q = 0 t i ( t ) d t {\displaystyle q=\int _{0}^{t}i(t')\mathrm {d} t'} 是累积于这节点的总电荷, q k = 0 t i k ( t ) d t {\displaystyle q_{k}=\int _{0}^{t}i_{k}(t')\mathrm {d} t'} 是流过支路 k {\displaystyle k} 的电荷, t {\displaystyle t} 是检验时间, t {\displaystyle t'} 是积分时间变数。

假设 q > 0 {\displaystyle q>0} ,则正电荷会累积于节点;否则,负电荷会累积于节点。根据电荷守恒定律, q {\displaystyle q} 是个常数,不能够随着时间演进而改变。由于这节点是个导体,不能储存任何电荷。所以, q = 0 {\displaystyle q=0} i = 0 {\displaystyle i=0} ,基尔霍夫电流定律成立:

从上述推导可以看到,只有当电荷量为常数时,基尔霍夫电流定律才会成立。通常,这不是个问题,因为静电力相斥作用,会阻止任何正电荷或负电荷随时间演进而累积于节点,大多时候,节点的净电荷是零。

不过,电容器的两块导板可能会允许正电荷或负电荷的累积。这是因为电容器的两块导板之间的空隙,会阻止分别累积于两块导板的异性电荷相遇,从而互相抵消。对于这状况,流向其中任何一块导板的电流总和等于电荷累积的速率,而不是零。但是,若将位移电流 J D {\displaystyle \mathbf {J} _{D}} 纳入考虑,则基尔霍夫电流定律依然有效。详尽细节,请参阅条目位移电流。只有当应用基尔霍夫电流定律于电容器内部的导板时,才需要这样思考。若应用于电路分析(circuit analysis)时,电容器可以视为一个整体元件,净电荷是零,所以原先的电流定律仍适用。

由更技术性的层面来说,取散度于麦克斯韦修正的安培定律,然后与高斯定律相结合,即可得到基尔霍夫电流定律:

其中, J {\displaystyle \mathbf {J} } 是电流密度, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, ρ {\displaystyle \rho } 是电荷密度。

这是电荷守恒的微分方程。以积分的形式表述,从封闭表面流出的电流等于在这封闭表面内部的电荷 Q {\displaystyle Q} 的流失率:

基尔霍夫电流定律等价于电流的散度是零的论述。对于不含时电荷密度 ρ {\displaystyle \rho } ,这定律成立。对于含时电荷密度,则必需将位移电流纳入考虑。

以矩阵表达的基尔霍夫电流定律是众多电路模拟软件(electronic circuit simulation)的理论基础,例如,SPICE或NI Multisim。

基尔霍夫电压定律又称为基尔霍夫第二定律,表明:

或者,换句话说,

以方程表达,对于电路的任意闭合回路,

其中, m {\displaystyle m} 是这闭合回路的元件数目, v k {\displaystyle v_{k}} 是元件两端的电压,可以是实数或复数。

基尔霍夫电压定律不仅应用于闭合回路,也可以把它推广应用于回路的部分电路。

在静电学里,电势定义为电场的负线积分:

其中, ϕ ( r ) {\displaystyle \phi (\mathbf {r} )} 是电势, E {\displaystyle \mathbf {E} } 是电场, L {\displaystyle \mathbb {L} } 是从参考位置到位置 r {\displaystyle \mathbf {r} } 的路径, d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}} 是这路径的微小线元素。

那么,基尔霍夫电压定律可以等价表达为:

其中, C {\displaystyle \mathbb {C} } 是积分的闭合回路。

这方程乃是法拉第电磁感应定律对于一个特殊状况的简化版本。假设通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量为常数,则这方程成立。

这方程指明,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分为零。将这线积分切割为几段支路,就可以分别计算每一段支路的电压。

由于含时电流会产生含时磁场,通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量是时间的函数,根据法拉第电磁感应定律,会有电动势 E {\displaystyle {\mathcal {E}}} 出现于闭合回路 C {\displaystyle \mathbb {C} } 。所以,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分不等于零。这是因为电流会将能量传递给磁场;反之亦然,磁场亦会将能量传递给电流。

对于含有电感器的电路,必需将基尔霍夫电压定律加以修正。由于含时电流的作用,电路的每一个电感器都会产生对应的电动势 E k {\displaystyle {\mathcal {E}}_{k}} 。必需将这电动势纳入基尔霍夫电压定律,才能求得正确答案。

思考单频率交流电路的任意节点,应用基尔霍夫电流定律

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流, I k {\displaystyle I_{k}} 是其振幅, θ k {\displaystyle \theta _{k}} 是其相位, ω {\displaystyle \omega } 是角频率, t {\displaystyle t} 是时间。

对于任意时间,这方程成立。所以,设定相量 I k = I k e j θ k {\displaystyle \mathbb {I} _{k}=I_{k}e^{j\theta _{k}}} ,则可以得到频域的基尔霍夫电流定律,以方程表达,

频域的基尔霍夫电流定律表明:

这是节点分析的基础定律。

类似地,对于交流电路的任意闭合回路,频域的基尔霍夫电压定律表明:

以方程表达,

其中, V k {\displaystyle \mathbb {V} _{k}} 是闭合回路的元件两端的电压相量。

这是网目分析(mesh analysis)的基础定律。

相关

  • 庆应义塾大学庆应义塾大学(日语:慶應義塾大学/けいおうぎじゅくだいがく Keiō Gijuku daigaku;英语译名:Keio University),简称庆应(けいおう)或庆大(けいだい),乃日本著名思想家福泽谕吉所创建的
  • 非共价非共价键并不依赖电子间的共享,而是依赖正负电荷间的吸引力,因此吸力较弱,故仅需较小的力量就可将之打断。非共价键主要出现于超分子化学中,所担任的角色为:维持脱氧核糖核酸(DNA,
  • 德克萨斯理工大学德克萨斯理工大学 (英文Texas Tech University,缩写为TTU,也常译为德州理工大学),是一所位于美国德克萨斯州拉伯克市的研究型大学,学校成立于1923年2月10号,最初称为德克萨斯技术学
  • 南里奥格兰德州南里奥格兰德州(葡萄牙语:Rio Grande do Sul,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code
  • 奥地利交通本文简述奥地利的交通状况。奥地利是内陆国,国内没有海港,水运为内河航运。总计: 6,123 km (3,523 km 电气化)标准轨 5,639 km 1,435毫米(4英尺8 1⁄2英寸)窄轨 507 km奥地利
  • 东海道新干线东海道新干线(日语:東海道新幹線/とうかいどうしんかんせん Tōkaidō Shinkansen */?)是日本一条连接东京站与新大阪站之间的新干线路线,不但是日本第一条高速铁路路线,也是全
  • 弗雷泽河弗雷泽河 (Fraser River),加拿大华人称为菲沙河,是加拿大不列颠哥伦比亚省最长的河流、加拿大第十长河流。全长1,375公里,流域面积220,000平方公里,当中一小部分位于美国华盛顿州
  • 史矛革史矛革(英语:Smaug)是托尔金奇幻小说《霍比特人历险记》的虚构角色。史矛革是中土大陆最后的一条巨龙,它是书中主要的反派角色,早前已使河谷镇(Dale)荒废,占据了孤山(Lonely Mountain
  • 316国道316国道(或“国道316线”、“G316线”)是在中国的一条国道,起点为福建省福州市长乐区,终点为甘肃省黄南藏族自治州同仁县的国道,全程2915千米。这条国道经过福建、江西、湖北、陕
  • 红鸢红鸢(学名:)也称赤鸢,是鹰科中一种中等体型的猛禽。该物种是欧洲和西北非洲西古北区(英语:Western Palearctic)的特有种,但也分布于伊朗北部。它栖居在上述地区气候相对温和的地带—