基尔霍夫电路定律

✍ dations ◷ 2025-04-05 20:17:07 #物理定律,电路,电路定理,电压

基尔霍夫电路定律(Kirchhoff Circuit Laws)简称为基尔霍夫定律,指的是两条电路学定律,基尔霍夫电流定律与基尔霍夫电压定律。它们涉及了电荷的守恒及电势的保守性。1845年,古斯塔夫·基尔霍夫首先提出基尔霍夫电路定律。现在,这定律被广泛地应用于电气工程学。

从麦克斯韦方程组可以推导出基尔霍夫电路定律。但是,基尔霍夫并不是依循这条思路发展,而是从格奥尔格·欧姆的工作成果加以推广得之。

基尔霍夫电流定律又称为基尔霍夫第一定律,表明:

或者,更详细描述,

以方程表达,对于电路的任意节点,

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流,是流过与这节点相连接的第 k {\displaystyle k} 个支路的电流,可以是实数或复数。

由于累积的电荷(单位为库仑)是电流(单位为安培)与时间(单位为秒)的乘积,从电荷守恒定律可以推导出这条定律。其实质是稳恒电流的连续性方程,即根据电荷守恒定律,流向节点的电流之和等于流出节点的电流之和。

思考电路的某节点,跟这节点相连接有 n {\displaystyle n} 个支路。假设进入这节点的电流为正值,离开这节点的电流为负值,则经过这节点的总电流 i {\displaystyle i} 等于流过支路 k {\displaystyle k} 的电流 i k {\displaystyle i_{k}} 的代数和:

将这方程积分于时间,可以得到累积于这节点的电荷的方程:

其中, q = 0 t i ( t ) d t {\displaystyle q=\int _{0}^{t}i(t')\mathrm {d} t'} 是累积于这节点的总电荷, q k = 0 t i k ( t ) d t {\displaystyle q_{k}=\int _{0}^{t}i_{k}(t')\mathrm {d} t'} 是流过支路 k {\displaystyle k} 的电荷, t {\displaystyle t} 是检验时间, t {\displaystyle t'} 是积分时间变数。

假设 q > 0 {\displaystyle q>0} ,则正电荷会累积于节点;否则,负电荷会累积于节点。根据电荷守恒定律, q {\displaystyle q} 是个常数,不能够随着时间演进而改变。由于这节点是个导体,不能储存任何电荷。所以, q = 0 {\displaystyle q=0} i = 0 {\displaystyle i=0} ,基尔霍夫电流定律成立:

从上述推导可以看到,只有当电荷量为常数时,基尔霍夫电流定律才会成立。通常,这不是个问题,因为静电力相斥作用,会阻止任何正电荷或负电荷随时间演进而累积于节点,大多时候,节点的净电荷是零。

不过,电容器的两块导板可能会允许正电荷或负电荷的累积。这是因为电容器的两块导板之间的空隙,会阻止分别累积于两块导板的异性电荷相遇,从而互相抵消。对于这状况,流向其中任何一块导板的电流总和等于电荷累积的速率,而不是零。但是,若将位移电流 J D {\displaystyle \mathbf {J} _{D}} 纳入考虑,则基尔霍夫电流定律依然有效。详尽细节,请参阅条目位移电流。只有当应用基尔霍夫电流定律于电容器内部的导板时,才需要这样思考。若应用于电路分析(circuit analysis)时,电容器可以视为一个整体元件,净电荷是零,所以原先的电流定律仍适用。

由更技术性的层面来说,取散度于麦克斯韦修正的安培定律,然后与高斯定律相结合,即可得到基尔霍夫电流定律:

其中, J {\displaystyle \mathbf {J} } 是电流密度, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, ρ {\displaystyle \rho } 是电荷密度。

这是电荷守恒的微分方程。以积分的形式表述,从封闭表面流出的电流等于在这封闭表面内部的电荷 Q {\displaystyle Q} 的流失率:

基尔霍夫电流定律等价于电流的散度是零的论述。对于不含时电荷密度 ρ {\displaystyle \rho } ,这定律成立。对于含时电荷密度,则必需将位移电流纳入考虑。

以矩阵表达的基尔霍夫电流定律是众多电路模拟软件(electronic circuit simulation)的理论基础,例如,SPICE或NI Multisim。

基尔霍夫电压定律又称为基尔霍夫第二定律,表明:

或者,换句话说,

以方程表达,对于电路的任意闭合回路,

其中, m {\displaystyle m} 是这闭合回路的元件数目, v k {\displaystyle v_{k}} 是元件两端的电压,可以是实数或复数。

基尔霍夫电压定律不仅应用于闭合回路,也可以把它推广应用于回路的部分电路。

在静电学里,电势定义为电场的负线积分:

其中, ϕ ( r ) {\displaystyle \phi (\mathbf {r} )} 是电势, E {\displaystyle \mathbf {E} } 是电场, L {\displaystyle \mathbb {L} } 是从参考位置到位置 r {\displaystyle \mathbf {r} } 的路径, d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}} 是这路径的微小线元素。

那么,基尔霍夫电压定律可以等价表达为:

其中, C {\displaystyle \mathbb {C} } 是积分的闭合回路。

这方程乃是法拉第电磁感应定律对于一个特殊状况的简化版本。假设通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量为常数,则这方程成立。

这方程指明,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分为零。将这线积分切割为几段支路,就可以分别计算每一段支路的电压。

由于含时电流会产生含时磁场,通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量是时间的函数,根据法拉第电磁感应定律,会有电动势 E {\displaystyle {\mathcal {E}}} 出现于闭合回路 C {\displaystyle \mathbb {C} } 。所以,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分不等于零。这是因为电流会将能量传递给磁场;反之亦然,磁场亦会将能量传递给电流。

对于含有电感器的电路,必需将基尔霍夫电压定律加以修正。由于含时电流的作用,电路的每一个电感器都会产生对应的电动势 E k {\displaystyle {\mathcal {E}}_{k}} 。必需将这电动势纳入基尔霍夫电压定律,才能求得正确答案。

思考单频率交流电路的任意节点,应用基尔霍夫电流定律

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流, I k {\displaystyle I_{k}} 是其振幅, θ k {\displaystyle \theta _{k}} 是其相位, ω {\displaystyle \omega } 是角频率, t {\displaystyle t} 是时间。

对于任意时间,这方程成立。所以,设定相量 I k = I k e j θ k {\displaystyle \mathbb {I} _{k}=I_{k}e^{j\theta _{k}}} ,则可以得到频域的基尔霍夫电流定律,以方程表达,

频域的基尔霍夫电流定律表明:

这是节点分析的基础定律。

类似地,对于交流电路的任意闭合回路,频域的基尔霍夫电压定律表明:

以方程表达,

其中, V k {\displaystyle \mathbb {V} _{k}} 是闭合回路的元件两端的电压相量。

这是网目分析(mesh analysis)的基础定律。

相关

  • 免疫豁免免疫豁免(英语:Immune privilege)在免疫学中是指由于解剖和免疫屏障的存在,有些自身抗原位于免疫豁免部位,自身反应性淋巴细胞不能接触到它们。如果屏障遭到破坏,自身抗原暴露,就能
  • 箭毒蛙箭毒蛙,即箭毒蛙科(Dendrobatidae),又名树棘蛙科或丛蛙科,是细小及白天活动的青蛙。它们是中美洲及南美洲的原住民,而当地部族将它们身上的毒素涂在箭上,故得此名。此科下有超过175
  • 自由电子激光自由电子激光器(FEL),所产生激光束的光学性质与传统激光器一样,具有高度相干、高能量的特点,其不同点在于其特殊的光源产生机制。传统利用气体、液体或固体(如半导体激光器)作为激
  • 日本锁国锁国是日本江户时代施行的外交政策,于1633年颁布第一次锁国令开始,直到1854年美国海军军官培里率舰叩关为止。当初实行该政策时亦称呼为“海禁”,锁国这名字是由兰学者志筑忠雄
  • 新斯科舍省坐标:45°13′N 62°42′W / 45.217°N 62.700°W / 45.217; -62.700 (Nova Scotia)新斯科舍省(英语:Nova Scotia;法语:Nouvelle-Écosse),简称诺省, 是加拿大东南岸的省份,面积55,28
  • 邱文达邱文达(1950年7月21日-),曾任中华民国卫生福利部部长,中山医学院(今中山医学大学)医学系毕业,在1985年进入台北医学大学医学系任教,2008年7月,同时接下台北医学大学第8任校长及双和医
  • 颜色丝带颜色丝带是一种折成或表现为环状的一小段丝带。在美国、加拿大、澳大利亚、英国以及世界上的许多地区,佩戴者佩戴颜色丝带以表达自己对某一主题或问题的关注或支持。丝带背后
  • 米兰达诉亚利桑那州案米兰达诉亚利桑那州案(英语:Miranda v. Arizona,384 U.S. 436 (1966))是联邦最高法院于1966年审理并最终以5比4作出判决的一个里程碑式的案件。在判决中,联邦最高法院规定在实施
  • 生态法西斯主义生态法西斯主义是一种理论上的政治模式,在这种模式下,极权主义政府要求个人为“有机整体”牺牲自己的利益,并依靠军国主义、扩张主义和可能的种族主义来保卫土地。该术语也被用
  • 圆周率近似值值得注意的是,一些法律或历史文本欲“定义π”为有理数,尤其是1897年的“印第安纳州法案”,指明“直径和圆周比例为四分之五比4(暗示“π= 3.2”);和希伯来圣经中的一个段落,暗示