基尔霍夫电路定律

✍ dations ◷ 2025-07-09 16:12:44 #物理定律,电路,电路定理,电压

基尔霍夫电路定律(Kirchhoff Circuit Laws)简称为基尔霍夫定律,指的是两条电路学定律,基尔霍夫电流定律与基尔霍夫电压定律。它们涉及了电荷的守恒及电势的保守性。1845年,古斯塔夫·基尔霍夫首先提出基尔霍夫电路定律。现在,这定律被广泛地应用于电气工程学。

从麦克斯韦方程组可以推导出基尔霍夫电路定律。但是,基尔霍夫并不是依循这条思路发展,而是从格奥尔格·欧姆的工作成果加以推广得之。

基尔霍夫电流定律又称为基尔霍夫第一定律,表明:

或者,更详细描述,

以方程表达,对于电路的任意节点,

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流,是流过与这节点相连接的第 k {\displaystyle k} 个支路的电流,可以是实数或复数。

由于累积的电荷(单位为库仑)是电流(单位为安培)与时间(单位为秒)的乘积,从电荷守恒定律可以推导出这条定律。其实质是稳恒电流的连续性方程,即根据电荷守恒定律,流向节点的电流之和等于流出节点的电流之和。

思考电路的某节点,跟这节点相连接有 n {\displaystyle n} 个支路。假设进入这节点的电流为正值,离开这节点的电流为负值,则经过这节点的总电流 i {\displaystyle i} 等于流过支路 k {\displaystyle k} 的电流 i k {\displaystyle i_{k}} 的代数和:

将这方程积分于时间,可以得到累积于这节点的电荷的方程:

其中, q = 0 t i ( t ) d t {\displaystyle q=\int _{0}^{t}i(t')\mathrm {d} t'} 是累积于这节点的总电荷, q k = 0 t i k ( t ) d t {\displaystyle q_{k}=\int _{0}^{t}i_{k}(t')\mathrm {d} t'} 是流过支路 k {\displaystyle k} 的电荷, t {\displaystyle t} 是检验时间, t {\displaystyle t'} 是积分时间变数。

假设 q > 0 {\displaystyle q>0} ,则正电荷会累积于节点;否则,负电荷会累积于节点。根据电荷守恒定律, q {\displaystyle q} 是个常数,不能够随着时间演进而改变。由于这节点是个导体,不能储存任何电荷。所以, q = 0 {\displaystyle q=0} i = 0 {\displaystyle i=0} ,基尔霍夫电流定律成立:

从上述推导可以看到,只有当电荷量为常数时,基尔霍夫电流定律才会成立。通常,这不是个问题,因为静电力相斥作用,会阻止任何正电荷或负电荷随时间演进而累积于节点,大多时候,节点的净电荷是零。

不过,电容器的两块导板可能会允许正电荷或负电荷的累积。这是因为电容器的两块导板之间的空隙,会阻止分别累积于两块导板的异性电荷相遇,从而互相抵消。对于这状况,流向其中任何一块导板的电流总和等于电荷累积的速率,而不是零。但是,若将位移电流 J D {\displaystyle \mathbf {J} _{D}} 纳入考虑,则基尔霍夫电流定律依然有效。详尽细节,请参阅条目位移电流。只有当应用基尔霍夫电流定律于电容器内部的导板时,才需要这样思考。若应用于电路分析(circuit analysis)时,电容器可以视为一个整体元件,净电荷是零,所以原先的电流定律仍适用。

由更技术性的层面来说,取散度于麦克斯韦修正的安培定律,然后与高斯定律相结合,即可得到基尔霍夫电流定律:

其中, J {\displaystyle \mathbf {J} } 是电流密度, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, ρ {\displaystyle \rho } 是电荷密度。

这是电荷守恒的微分方程。以积分的形式表述,从封闭表面流出的电流等于在这封闭表面内部的电荷 Q {\displaystyle Q} 的流失率:

基尔霍夫电流定律等价于电流的散度是零的论述。对于不含时电荷密度 ρ {\displaystyle \rho } ,这定律成立。对于含时电荷密度,则必需将位移电流纳入考虑。

以矩阵表达的基尔霍夫电流定律是众多电路模拟软件(electronic circuit simulation)的理论基础,例如,SPICE或NI Multisim。

基尔霍夫电压定律又称为基尔霍夫第二定律,表明:

或者,换句话说,

以方程表达,对于电路的任意闭合回路,

其中, m {\displaystyle m} 是这闭合回路的元件数目, v k {\displaystyle v_{k}} 是元件两端的电压,可以是实数或复数。

基尔霍夫电压定律不仅应用于闭合回路,也可以把它推广应用于回路的部分电路。

在静电学里,电势定义为电场的负线积分:

其中, ϕ ( r ) {\displaystyle \phi (\mathbf {r} )} 是电势, E {\displaystyle \mathbf {E} } 是电场, L {\displaystyle \mathbb {L} } 是从参考位置到位置 r {\displaystyle \mathbf {r} } 的路径, d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}} 是这路径的微小线元素。

那么,基尔霍夫电压定律可以等价表达为:

其中, C {\displaystyle \mathbb {C} } 是积分的闭合回路。

这方程乃是法拉第电磁感应定律对于一个特殊状况的简化版本。假设通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量为常数,则这方程成立。

这方程指明,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分为零。将这线积分切割为几段支路,就可以分别计算每一段支路的电压。

由于含时电流会产生含时磁场,通过闭合回路 C {\displaystyle \mathbb {C} } 的磁通量是时间的函数,根据法拉第电磁感应定律,会有电动势 E {\displaystyle {\mathcal {E}}} 出现于闭合回路 C {\displaystyle \mathbb {C} } 。所以,电场沿着闭合回路 C {\displaystyle \mathbb {C} } 的线积分不等于零。这是因为电流会将能量传递给磁场;反之亦然,磁场亦会将能量传递给电流。

对于含有电感器的电路,必需将基尔霍夫电压定律加以修正。由于含时电流的作用,电路的每一个电感器都会产生对应的电动势 E k {\displaystyle {\mathcal {E}}_{k}} 。必需将这电动势纳入基尔霍夫电压定律,才能求得正确答案。

思考单频率交流电路的任意节点,应用基尔霍夫电流定律

其中, i k {\displaystyle i_{k}} 是第 k {\displaystyle k} 个进入或离开这节点的电流, I k {\displaystyle I_{k}} 是其振幅, θ k {\displaystyle \theta _{k}} 是其相位, ω {\displaystyle \omega } 是角频率, t {\displaystyle t} 是时间。

对于任意时间,这方程成立。所以,设定相量 I k = I k e j θ k {\displaystyle \mathbb {I} _{k}=I_{k}e^{j\theta _{k}}} ,则可以得到频域的基尔霍夫电流定律,以方程表达,

频域的基尔霍夫电流定律表明:

这是节点分析的基础定律。

类似地,对于交流电路的任意闭合回路,频域的基尔霍夫电压定律表明:

以方程表达,

其中, V k {\displaystyle \mathbb {V} _{k}} 是闭合回路的元件两端的电压相量。

这是网目分析(mesh analysis)的基础定律。

相关

  • 炭疽芽孢杆菌炭疽杆菌是一种棒状的革兰氏阳性菌,长约1至6微米,这种细菌通常以内孢子之型态出现在土壤中,并可借此状态存活数十年之久,一旦由牲畜摄入,孢子便开始在动物体内大量复制,最后造成死
  • 肉鳍鱼类肉鳍鱼总纲(学名:Sarcopterygii)是硬骨鱼类的一个演化支。此类鱼的特点是鱼鳍中有一个中轴骨,在前鳍的基部上有明显的肌肉组织与分开的两片腹鳍,和之后两栖动物和四足类动物的演
  • 黄仲崑黄仲崑(1958年11月28日-),台湾男艺人,早期为男歌手,现今在戏剧上发展。他在1984年与杨林合唱陈彼得作词作曲的《故事的真相》,1994年凭一曲《有多少爱可以重来》红透歌坛。演出过多
  • Ecstasy摇头丸是一种毒品,其主要成分是MDMA,间中或掺有MDEA、MDA、MBDB或安非他命等其他成分。服用摇头丸者可即兴随音乐剧烈地不停抖动而不觉痛苦。过量摄入摇头丸可能带来数种致命
  • 帝国政治体帝国政治体(拉丁语:Status Imperii;德语单数:Reichsstand;德语复数:Reichsstände;英语:Imperial State/Imperial Estate),是指在神圣罗马帝国议会(Reichstag)拥有席位和投票权的政治实
  • 高安右人高安 右人(1860年9月4日-1938年11月20日),日本医生。他是大动脉炎(高安病)的发现者。高安右人于1860年9月4日出生于日本肥前国小城郡西多久村(现佐贺县多久市)。1887年毕业于东京帝
  • 泰国民主党民主党(泰语:พรรคประชาธิปัตย์,转写:Phak Prachathipat)是泰国历史最悠久的政党。成立于1946年。民主党亲泰国王室,亲商界(与反对他信政权的商界集团关系良好),支持
  • 芒特莱克泰勒斯山河阳台(英文:Mountlake Terrace),是美国华盛顿州斯诺霍米什县下属的一座城市。根据 2000年美国人口普查,该市有人口20,362人。根据2010年美国人口普查,该市有人口19,909人。而20
  • 2019冠状病毒病沙特阿拉伯疫情2019冠状病毒病沙特阿拉伯疫情,介绍在2019新型冠状病毒疫情中,在沙特阿拉伯发生的情况。2020年3月2日,2019冠状病毒病疫情扩散至沙特阿拉伯。3月2日, 沙特阿拉伯确诊第一例病例
  • 行车记录仪行车记录仪(英语:Dashcam)为架设在车上用的摄影机,用于记录行车时的周遭影像(主要是车辆前方)。在发生交通事故等纠纷时,可用做证据。