首页 >
脂多糖
✍ dations ◷ 2025-05-15 07:06:39 #脂多糖
脂多糖(Lipopolysaccharide)是一大型分子油脂和多糖由共价键相连组成的。脂多糖是革兰氏阴性细菌外膜的主要组成部分,提供并保持细菌结构的完整性,保护细菌的细胞膜抵抗某些化学物质的攻击。脂多糖是内毒素,可引起强烈免疫反应。脂多糖在人体内,会结合到细胞膜上的脂多糖受体复合体(CD14(英语:CD14)/TLR4/MD-2(英语:Lymphocyte antigen 96))上,促进炎性细胞分泌多种细胞因子。LPS的毒性是由李察•菲佛(英语:Richard Friedrich Johannes Pfeiffer)首次发现的,并认为是被细菌释放到周围环境中的内毒素,平常保存在细菌细胞内,仅在破坏细菌细胞壁后才会被释放:84。随后的研究表明,从革兰氏阴性微生物中释放LPS,不一定需要破坏细菌细胞壁,反而LPS可作为膜小泡运输(英语:Membrane vesicle trafficking)正常生理活动的一部分,以OMVs(英语:Bacterial outer membrane vesicles)形式分泌出来,包含着其他致病因子(英语:Virulence factor)和蛋白质。如今,内毒素通常与LPS同义,不过仍有一些与LPS不相关的内毒素,例如革兰氏阳性的苏云金芽孢杆菌所分泌的bt毒蛋白(英语:delta endotoxin)。脂多糖通常由三部分组成:脂寡糖(Lipooligosaccharides、LOS)是脂多糖的相对不常见结构。LOS是在某些类型的革兰氏阴性细菌外膜中发现的糖脂,例如奈瑟菌属和嗜血杆菌属。该术语与细菌LPS的低分子量形式同义。LOS在维持革兰氏阴性细菌外膜的完整性和功能性方面起著核心作用。脂寡糖在某些细菌感染的发病机理中起着重要的作用。因为它们能够充当免疫调节剂。此外,LOS分子负责一些细菌菌株展示其分子拟态和抗原变异(英语:Antigenic variation)的能力,有助逃避宿主的免疫防御系统,从而提升细菌菌株的病毒性。 脂寡糖缺乏多糖链,仅具有基于脂质A的外膜锚定部分和寡糖核心。在脑膜炎双球菌的情况下,分子的脂质A部分具有对称结构,内核心寡糖由KDO和庚糖部分组成,而外核心寡糖则取决于细菌的分型。脂寡糖是指细菌中脂多糖的低分子量形式,可分为两种形式:高分子量形式(Mr或平滑)具有高分子量、重复多糖O链,而低分子量形式(低Mr或粗糙)则缺少O链,但有短的寡糖取代其位置。脂多糖是大多数革兰氏阴性细菌胞膜的主要成分,为细菌的结构完整性做出了巨大贡献,正因为革兰氏阴性菌的外膜有大量脂多糖分子,才使得其细胞膜具有独特的难渗透性,有效帮助细菌细胞应对外界有害刺激,使胞膜免受某些化学攻击。此外,脂多糖还增加了细胞膜的负电荷,并有助于稳定整个胞膜的结构。 这对于许多革兰氏阴性细菌至关重要,然而脂多糖在某些革兰氏阴性细菌中并无巨大重要性,例如脑膜炎双球菌、卡他莫拉菌(英语:Moraxella catarrhalis)和鲍氏不动杆菌。LPS会引起动物免疫系统的强烈反应。 它还涉及细菌生态学的非致病性方面,包括表面粘附现象、噬菌体敏感性以及与天敌的相互作用。 脂多糖是构建Pla(英语:Omptin)活性必需的东西,然而平滑的脂多糖在空间上会阻碍到Pla。LPS是典型的内毒素,因为它在许多细胞类型中,尤其是在单核细胞、树突状细胞、巨噬细胞和B细胞中结合了CD14(英语:CD14) / TLR4(英语:TLR4) / 髓样分化蛋白2(英语:Lymphocyte antigen 96)受体复合物,从而促进促炎性细胞因子、一氧化氮和类花生酸的分泌。作为细胞应激反应的一部分,超氧化物是在各种细胞类型中被诱导的主要活性氧之一,当中会表达类铎受体。同时,LPS也是外源的热原(英语:Pyrogen)(即导致发烧的物质) 。这对于革兰氏阴性细菌至关重要,因为这些分子成为新的抗微生物(英语:Antimicrobial)剂的候选靶标。此外,LPS对许多转录因子的激活作用是一直处于实验研究状态的议题。 LPS还会产生与败血性休克有关的多种介体。人类对LPS的敏感性比其他动物高。1μg/ kg的剂量就会令人类休克,但是小鼠最多可以耐受比其多一千倍的剂量。这可能与两个物种之间循环天然抗体 (circulating natural antibodies) 水平的差异有关。O抗原的生物合成已知有三种途径。第一是Wzy依赖途径,第二是ABC转运蛋白依赖途径,而第三则是合成酶依赖途径。前两个途径很常见,而合成酶依赖途径则不常见,然而三通路有类似的起始反应:形成十一异戊二烯焦磷酸(Und-PP)并连接糖,通常由WecA和GlcNAc-1P转运酶催化,形成Und-PP-GlcNAc。在Wzy依赖途径中,O抗原亚基通过Wzx翻转酶,跨越内膜来移位至外周胞质中,再通过Wzy进行聚合,并由Wzz调节最终的O抗原链长度接着通过WaaL进行连接。接着再通过MsbA形成完整的和已移位的Core-Lipid A分子。在ABC转运蛋白依赖途径中,整个O抗原是在细胞质中组装的,然后由Wzm和Wzt组成的ABC转运蛋白转运出去。Wzm形成膜通道,而Wzt提供了转运能量。在合成酶依赖途径中,依赖两种酶WbbE和WbbF,同时通过内膜延长并排出O抗原。透过将细胞内已装配完整的LPS正确装配到外膜,使得与脂多糖相关的阻渗、有机溶剂耐受性、疏水性抗生素耐受性及膜通透性等功能得以实现。该运输系统的作用主要依赖7个不同的脂多糖运输蛋白 (LptABCDEFG) 协同完成。整个系统贯穿细菌内膜至外膜,并且由ABC转运体复合物LptB2FG、胞质内协同转运蛋白LptA和LptC,以及外膜蛋白复合物LptDE共同构成。首先,细胞内膜上蛋白复合物共同形成ABC转运体复合物,接收由MsbA翻转酶翻转出内膜的完整脂多糖结构。LPS翻转出内膜的细胞周质面后,会被呈递给ABC转运体的LptB2FG,构建出一个针对LPS的信号转导通路,并且将LPS运输至周质转运蛋白LptA/C。因本身携带有大量的负电荷而会对邻近的分子间产生静电排斥力的脂质A,使得LPS能沿LptA-LptC进行单向移动。接着,LPS会通过LptA与LptD间的水溶性周质结构,被运输至位于外膜的β桶状蛋白LptD的氮端,并且插入LptD的内部。在LptD的碳端桶状蛋白结构中,由LptD的分子伴侣LptE进行方向调整,使其垂直于外膜,并且在外膜带正电荷的Mg2+的帮助下完成在LptD蛋白中的侧向移动过程。最终,LPS成功装配到外膜上。通过修饰LPS,可以呈现特定的糖结构。这些可以被能够抑制LPS毒素的LPS识别,抑或被使用这些糖结构,添加更多特定糖的糖基转移酶(英语:Glycosyltransferase)识别。有研究显示,肠中的一种碱性磷酸酶可以通过去除LPS中碳水化合物上的两个磷酸基团,使LPS解毒 。这可能是一种适应机制,可帮助宿主管理小肠中革兰氏阴性细菌的潜在毒性。当LPS进入动物组织或在动物组织中产生时,其他酶可能会帮助LPS解毒。中性粒细胞、巨噬细胞和树突状细胞产生脂酶,而酰氧基酰基水解酶(英语:AOAH)(AOAH)则通过从脂质A中去除两条二级酰基链令LPS失活。如果在胃肠外给予LPS,缺乏酰氧基酰基水解酶的小鼠就会产生高滴度的非特异性抗体,延长肝肿大(英语:hepatomegaly)和经历很长的内毒素耐受性。胃肠外的LPS暴露后,动物可能需要失活LPS来恢复体内平衡。内毒素血症是由血中细菌或病灶内细菌释放出大量内毒素至血液或向血液中输入大量内毒素污染的液体而引起的一种病理表现,大约有9%的内毒素血症患者会发生多器官功能衰竭等症状,全球的内毒素血症发生率以每年1.5%的速度增长。肠源性内毒素血症 (IETM) ,尤其是在宿主-病原体界面(英语:Host–pathogen interaction)的内毒素血症,被认为是酒精性肝炎发展的重要因素。这可能是由于小肠细菌过度生长,以及肝炎引起的肠道通透性增加,肠道革兰阴性菌产生的内毒素容易进入循环系统,过量的内毒素随着肠肝循环进入到肝脏。随着细菌在血液中繁殖,还可以在病程的后期,观察到明显的补体激活。高细菌增殖引发破坏性的内皮损伤也可能导致弥漫性血管内凝血(DIC)。由于血液供应受损,某些内部器官(例如肾脏,肾上腺和肺)的功能会丧失。皮肤有显示出血管损伤的作用,通常伴有瘀点、紫癜和瘀斑形式的凝血因子耗竭。肢体也可能受到一定的影响,有时会造成毁灭性的后果,例如因坏疽的形成而需要截肢。而肾上腺的功能丧失会导致肾上腺功能不全(英语:Adrenal insufficiency),肾上腺的额外出血会导致沃特豪斯-弗里德里克森二氏症候群(英语:Waterhouse–Friderichsen syndrome),两者均可能危及生命。脂质A可能导致哺乳动物免疫系统不受控制的激活,并且产生多种炎性介质,从而可能导致败血性休克。这种炎症反应是由Toll样受体4介导的,后者是心脏及血管细胞膜上革兰氏阴性菌的脂多糖的近端受体,其下端激活蛋白包括p38丝裂原活化蛋白激酶 (p38MAPK)、氨基末端激酶 (JNK) 和胞外信号调节激酶 (ERK) 等,负责免疫系统细胞的活化。这些炎性介质对血管内皮层的损害,可以导致毛细血管渗漏综合征 (capillary leak syndrome) 、血管扩张和心脏功能下降。研究表明,促炎性细胞因子如肿瘤坏死因子-α (TNF-α) 和白细胞介素-1β (IL-1β) 的过度释放可能是内毒素血症导致心功能障碍的主要原因。IL-1β 和TNF-α 均能引起血压降低和休克,导致浓度依赖型的心肌细胞收缩性抑制,这两种因子有可能通过协同作用,引起与内毒素血症有关联的心肌抑制。内毒素血症患者的组织损伤和多器官损伤与细胞内线粒体的功能紊乱有密不可分的联系。内毒素血症时,TNF-α受体激活线粒体凋亡信号,在线粒体损伤初期,线粒体磷脂双分子层膜的渗透性改变,呈持久的高通透性状态,一些离子内流使得线粒体膜电位异常,引致破裂。最终导致线粒体凋亡,造成心肌细胞能量供应不足,进而导致心肌细胞缺失,引起心功能障碍。严重的内毒素血症和败血性休克与细胞内钙离子稳态的变化有关,通常伴随着收缩期细胞内钙离子浓度的减少和心肌收缩的减弱。有研究表明,内毒素负荷增加是某些与肥胖有关的患者群体的致病原因,内毒素负荷增加是由于肠道内产生内毒素的细菌数量增加所致 。其他研究表明,从大肠杆菌中纯化出的内毒素在注射入无菌模式生物后,可以诱导肥胖和胰岛素的抵抗。最近的一项研究发现,阴沟肠杆菌(英语:Enterobacter cloacae)B29对人类患者的肥胖和胰岛素抵抗具有潜在的作用 。内毒素与肥胖症相关联的推测机制是内毒素诱导炎症介导的途径。埃希氏菌属(英语:Escherichia)和肠杆菌属是与内毒素相关的肥胖影响有关的细菌属。
相关
- 麻疹麻疹(拉丁语:Morbilli;德语:Masern;法语:Rougeole;英语:Measles 或 Rubeola;日语:はしか),是麻疹疫苗未出现前,一种好发在儿童身上的传染病,但成人也有一定机会感染。儿童常见的急性病毒是
- 鼻漏鼻漏(英语:rhinorrhea或rhinorrhoea)是指鼻腔充斥大量黏液的一种症状。该症状也被称为流鼻涕、流鼻水等,在人身上较为常见。鼻漏是过敏(过敏性鼻炎)和其他一些疾病(如普通感冒)的常
- 扁桃腺扁桃腺,又称扁桃体,是人和两栖类以上动物,鼻后孔的顶壁或咽与口腔、鼻腔交界处粘膜下淋巴组织所集成的团块的通称,因为外形像扁桃一样而得名。一般所说的扁桃腺是指肉眼可见的颚
- eMedicineeMedicine是一个建立于1996年的线上临床医学知识库,创建者为两名医生,分别是Scott Plantz与Richard Lavely。这家公司于2006年卖给了WebMD。
- 鼓膜鼓膜(Tympanic membrane)是分割外耳和中耳的薄膜。鼓膜是耳的重要组成部分,它获取空气中的声音,并将之传递给中耳中的听小骨。在听小骨中,直接与鼓膜相连的是锤骨。鼓膜的破裂或
- 谵妄.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 大肠杆菌大肠杆菌(学名:Escherichia coli,通常简写:E. coli)是人和动物肠道中著名的一种细菌,主要寄生于大肠内,约占肠道菌中的0.1%。大肠杆菌是一种两端钝圆、能运动、无芽孢的革兰氏阴性
- 异常球菌-栖热菌门本分类名称尚未确定,目前根据伯杰氏手册暂称为异常球菌-栖热菌门。本门包括一些能抵抗严酷环境的球状细菌,分为两个目。异常球菌目只有一个属,异常球菌属(Deinococcus),包括几个耐
- 放射性放射性或辐射性是指某元素的放射性同位素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等)而衰变形成另一种同位素(衰变产物),这种现象称为放射性。衰变时放出的能量
- 真核域真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物,而不包括细菌和古菌,因它