弹性力学,也称弹性理论,是固体力学的一个分支,研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移问题。
作用于物体的外力可分为体积力和表面力。体积力是作用在物体内部体积上的外力,简称体力,例如重力、惯性力、电磁力等。表面力是作用在物体表面上的外力,简称面力,例如流体压力、接触力等。
对符合上述前4项假定的物体,称为理想弹性体。
∂ σ x ∂ x + ∂ τ y x ∂ y + ∂ τ z x ∂ z + X = 0 ∂ τ x y ∂ x + ∂ σ y ∂ y + ∂ τ z y ∂ z + Y = 0 ∂ τ x z ∂ x + ∂ τ y z ∂ y + ∂ σ z ∂ z + Z = 0 {\displaystyle {\begin{aligned}{\frac {\partial \sigma _{x}}{\partial x}}+{\frac {\partial \tau _{yx}}{\partial y}}+{\frac {\partial \tau _{zx}}{\partial z}}+X=0\\{\frac {\partial \tau _{xy}}{\partial x}}+{\frac {\partial \sigma _{y}}{\partial y}}+{\frac {\partial \tau _{zy}}{\partial z}}+Y=0\\{\frac {\partial \tau _{xz}}{\partial x}}+{\frac {\partial \tau _{yz}}{\partial y}}+{\frac {\partial \sigma _{z}}{\partial z}}+Z=0\\\end{aligned}}}
∇ ⋅ σ + f = 0 {\displaystyle \nabla \cdot {\boldsymbol {\sigma }}+{\boldsymbol {f}}={\boldsymbol {0}}}
ϵ x = ∂ u ∂ x , γ y z = 1 2 ( ∂ w ∂ y + ∂ v ∂ z ) ϵ y = ∂ v ∂ y , γ z x = 1 2 ( ∂ u ∂ z + ∂ w ∂ x ) ϵ z = ∂ w ∂ z , γ x y = 1 2 ( ∂ v ∂ x + ∂ u ∂ y ) {\displaystyle {\begin{aligned}\epsilon _{x}={\frac {\partial u}{\partial x}},\quad \gamma _{yz}={\frac {1}{2}}\left({\frac {\partial w}{\partial y}}+{\frac {\partial v}{\partial z}}\right)\\\epsilon _{y}={\frac {\partial v}{\partial y}},\quad \gamma _{zx}={\frac {1}{2}}\left({\frac {\partial u}{\partial z}}+{\frac {\partial w}{\partial x}}\right)\\\epsilon _{z}={\frac {\partial w}{\partial z}},\quad \gamma _{xy}={\frac {1}{2}}\left({\frac {\partial v}{\partial x}}+{\frac {\partial u}{\partial y}}\right)\\\end{aligned}}}
ϵ = 1 2 ( u ∇ + ∇ u ) {\displaystyle {\boldsymbol {\epsilon }}={\frac {1}{2}}\left({\boldsymbol {u}}\nabla +\nabla {\boldsymbol {u}}\right)}
ϵ x = 1 E , γ y z = 1 G τ y z ϵ y = 1 E , γ z x = 1 G τ z x ϵ z = 1 E , γ x y = 1 G τ x y {\displaystyle {\begin{aligned}\epsilon _{x}={\frac {1}{E}}\left,\quad \gamma _{yz}={\frac {1}{G}}\tau _{yz}\\\epsilon _{y}={\frac {1}{E}}\left,\quad \gamma _{zx}={\frac {1}{G}}\tau _{zx}\\\epsilon _{z}={\frac {1}{E}}\left,\quad \gamma _{xy}={\frac {1}{G}}\tau _{xy}\\\end{aligned}}}
σ z = τ z x = τ z y = 0 {\displaystyle \sigma _{z}=\tau _{zx}=\tau _{zy}=0}
ϵ z = γ z x = γ z y = 0 {\displaystyle \epsilon _{z}=\gamma _{zx}=\gamma _{zy}=0}