期望

✍ dations ◷ 2025-12-08 03:08:56 #期望
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。例如,掷一枚公平的六面骰子,其每次“点数”的期望值是3.5,计算如下:不过如上所说明的,3.5虽是“点数”的期望值,但却不属于可能结果中的任一个,没有可能掷出此点数。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-0.0526美元。也就是说,平均起来每赌1美元就会输掉0.0526美元,即美式轮盘以1美元作赌注的期望值为负0.0526美元。如果 X {displaystyle X} 是在概率空间 ( Ω , F , P ) {displaystyle (Omega ,F,P)} 中的随机变量,那么它的期望值 E ⁡ ( X ) {displaystyle operatorname {E} (X)} 的定义是:并不是每一个随机变量都有期望值的,因为有的时候上述积分不存在。如果两个随机变量的分布相同,则它们的期望值也相同。如果 X {displaystyle X} 是离散的随机变量,输出值为 x 1 , x 2 , … {displaystyle x_{1},x_{2},ldots } ,和输出值相应的概率为 p 1 , p 2 , … {displaystyle p_{1},p_{2},ldots } (概率和为1)。若级数 ∑ i p i x i {displaystyle sum _{i}p_{i}x_{i}} 绝对收敛,那么期望值 E ⁡ ( X ) {displaystyle operatorname {E} (X)} 是一个无限数列的和。上面赌博的例子就是用这种方法求出期望值的。如果 X {displaystyle X} 是连续的随机变量,存在一个相应的概率密度函数 f ( x ) {displaystyle f(x)} ,若积分 ∫ − ∞ ∞ x f ( x ) d x {displaystyle int _{-infty }^{infty }xf(x),mathrm {d} x} 绝对收敛,那么 X {displaystyle X} 的期望值可以计算为:是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。在统计学中,估算变量的期望值时,经常用到的方法是重复测量此变量的值,再用所得数据的平均值来估计此变量的期望值。在概率分布中,期望值和方差或标准差是一种分布的重要特征。在古典力学中,物体重心的算法与期望值的算法十分近似。在赌博中,期望值又称预期值、长期效果值、合理价值、期待值,都能完全贴和,而其计算的方式为:期望值也可以通过方差计算公式来计算方差:

相关

  • 蛋白质复合物蛋白质复合体(英语:protein complex)是有两个以上功能相关的多肽链通过二硫键或其它蛋白质相互作用所形成的复合物。蛋白质复合体的种类繁多,许多种的性质与功能都还不为人所知,
  • 三角肌三角肌(俗称“大头肌”)围绕着肩膀连接的肩胛骨、锁骨及肱骨,肩部和上臂的大多数运动都离不开三角肌,它使肩膀坚固,并使手臂可以作出多方向的运动。需要强大三角肌力量的运动包括
  • mmHg毫米汞柱(英语:Millimeter of mercury),符号为mmHg,是一种压力单位,等于一毫米高的水银柱对液柱底面产生的压力。一毫米汞柱为133.322387415帕斯卡,约为1托。。
  • 长波在电台中,长波 (英文:Longwave)是指无线电频谱与相对较长的波长。这个词语的历史可以追溯到20世纪初,当时无线电频谱被视为包括长期、中期和短期波长。大多数现代无线电系统和
  • 氟氯碳化物氯氟烃(英语:Chlorofluorocarbons,簡稱CFCs),又称氟氯烃、氯氟碳化合物、氟氯碳化合物、氟氯碳化物、氯氟化碳,是一组由氯、氟及碳组成的卤代烷。因为低活跃性、不易燃烧及无毒,氯
  • 维托里奥·埃马努埃莱三世维托里奥·埃马努埃莱三世(又译维克多·伊曼纽三世,意大利语:Vittorio Emanuele,1869年11月11日-1947年12月28日),意大利国王兼最高帝国元帅(1900年7月29日-1946年5月9日在位)、埃塞
  • 燃素燃素说(英语:Phlogiston theory),是一个已被取代的化学理论,起源于17世纪。这个理论假设,任何物质在燃烧时,都会释放出一种名叫燃素(Phlogiston)的成分。这个学说被安托万-洛朗·德·
  • 真蕨类真蕨纲(Polypodiopsida),又称为链束植物(Monilophytes)是植物界中真叶植物下的两个演化支之一,是种子植物的姊妹群。真蕨纲比起较原始的石松门多了真正的叶子,但比起较进化的种子植
  • 色氨酸羟化酶色氨酸羟化酶(英语:Tryptophan hydroxylase,EC 1.14.16.4)也称为色氨酸5-单加氧酶,简称TPH,是合成神经递质5-羟色胺的过程中重要的酶。色氨酸羟化酶可催化如下酶促反应:以上反应还
  • 阳明山国家公园阳明山国家公园是中华民国设置的第三个国家公园,由内政部营建署管辖,前身为台湾日治时期成立之大屯国立公园(1937-1945)。位于台北都会区近郊,行政区域 包括台北市北投区、士林区