富比尼–施图迪度量

✍ dations ◷ 2025-04-02 17:08:08 #射影几何,复流形,辛几何,流形上的结构,量子力学

在数学中,富比尼–施图迪度量(Fubini–Study metric)是射影希尔伯特空间上一个凯勒度量。所谓射影希尔伯特空间即赋予了埃尔米特形式的复射影空间 CP。这个度量最先由圭多·富比尼与爱德华·施图迪在1904年与1905年描述。

向量空间 C+1 上一个埃尔米特形式定义了 GL(+1,C) 中一个酉子群 U(+1)。一个富比尼–施图迪度量在差一个位似(整体缩放)的意义下由这样一个 U(+1) 作用下的不变性决定;从而是齐性的。赋予这样一个富比尼–施图迪度量后,CP 是一个对称空间。度量的特定正规化与(2+1)-球面上的标准度量有关。在代数几何中,利用一个正规化使 CP 成为一个霍奇流形。

富比尼–施图迪度量自然出现于复射影空间的商空间构造。

具体地,可以定义 CP 由 C+1 中复直线组成的空间,即 C+1 在将一点与其所有复数倍联系在一起的等价关系下的商。这与在乘法群 C* = C \ {0} 的对角群作用下的商相同:

这个商将 C+1 实现为底空间 CP 上的复线丛(事实上这就是 CP 上所谓的重言丛)。CP 中的一点等同于 (+1)-元组 模去非零复缩放的一个等价类;这些 称为这个点的齐次坐标。

进一步,我们可以分两步实现这个商:因为乘以一个非零复数 =  iθ 可以惟一地想成一个以模长 为因子的缩放与沿着原点一个逆时针旋转角度 θ {\displaystyle \theta } +1→CP 分成两块。

其中第 (a) 步以正实数乘法群 R+ 的缩放 Z ~ Z,这里 ∈R+,作商;步骤 (b) 是关于旋转 Z ~ iθZ 的商。

第 (a) 步所得的商是由方程 |Z|2 = |0|2 + ... + ||2 = 1 所定义的实超球面 2+1。第 (b) 步的商实现为 CP = 2+1/1,这里 1 表示旋转群。这个商由著名的霍普夫纤维化1 → 2+1 → CP实现 ,纤维属于 S 2 n + 1 {\displaystyle S^{2n+1}} 作用在黎曼流形 (,)上,则为了是轨道空间 / 拥有一个诱导度量, g {\displaystyle g} -轨道必须是常值,这便是说对任何元素 ∈ 以及一对向量场 X , Y {\displaystyle X,Y} (,) = (,)。

'+1 上标准埃尔米特度量在标准基下为

它的实化是 R2 上标准欧几里得度量。这个度量在 C* 的作用下没有不变性,所以我们不能直接将其推下到商空间 CPn 中。但是,这个度量在旋转群 1 = U(1) 的对角作用下是不变的。从而,上面构造中的步骤 (b) 是可能的只要完成步骤 (a)。

富比尼–施图迪度量是在商CP = 2+1/1 上诱导的度量, 其中 S 2 n + 1 {\displaystyle S^{2n+1}} 中具有齐次坐标(0,...,) 的一点,只要 0 ≠ 0,存在惟一 个坐标集合 (1,…,) 使得

特别地 = /0。这个 (1,…,) 组成 CP 在坐标片 0 = {0 ≠0 } 上的一个仿射坐标系。在任意坐标片 ={≠0} 上通过除以 ,得到一个仿射坐标系。这 +1 个坐标片 盖住了 CP,在 上可以利用仿射坐标系 (1,…,) 给出度量的具体表达式。坐标导数定义了 CP 全纯切丛的一个标架 { 1 , , n } {\displaystyle \{\partial _{1},\ldots ,\partial _{n}\}} 12+...+2。这样,富比尼–施图迪度量在这个标架下的埃尔米特矩阵是

注意每个矩阵元素是酉不变的:对角作用 z e i θ z {\displaystyle \mathbf {z} \mapsto e^{i\theta }\mathbf {z} } 和 从 1 求到 。

在齐次坐标 Z =  中也有相应的表达式。形式上,我们有

上面所涉及表达式需合适地理解。上面使用了求和约定,希腊字母指标从 0 求到 ,最后一个等式使用了一个张量的反对称部分的标准记号:

现在,d2 的这个表达式显然在重言丛 C+1\{0} 的全空间上定义了一个张量。通过沿着 CP 上重言丛的一个全纯截面 σ 拉回为 CP 上一个张量。还需验证拉回值与界面的选取无关:这可以直接计算。

差一个整体正规化常数,这个度量的凯勒形式为

其拉回显然与全纯界面的选取无关。量 log|Z|2 是 CP 的凯勒数量。

当 = 1,有由球极投影给出的微分同胚 S 2 C P 1 {\displaystyle S^{2}\cong \mathbb {CP} ^{1}} 1→3→2。当在 CP1 中的坐标系写出富比尼–施图迪度量,它在实切丛上的限制得出 2 上半径 1/2 的通常圆度量。

具体地,如果 = + i 是黎曼球面 CP1 上标准仿射坐标卡,且=cosθ, = sinθ 是 C 上的极坐标,则一个简单的计算表明

这里 d s u s 2 {\displaystyle ds_{us}^{2}}  tan(φ/2) = 1, tanθ = / 给出的 2 “数学家的”球坐标(许多物理学家偏向于将 φ 和 θ互换)。

在 = 1 的特例,富比尼–施图迪度量具有恒等于 4 的数量曲率,因为它与 2-球面的圆度量等价(半径 球面的数量曲率是 1 / R 2 {\displaystyle 1/R^{2}} > 1,富比尼–施图迪度量没有常曲率。其截面曲率由下列方程给出

这里 { X , Y } T p C P n {\displaystyle \{X,Y\}\in T_{p}\mathbf {CP} ^{n}}  : CP → CP 是 CP 上的复结构,而 , {\displaystyle \langle \cdot ,\cdot \rangle } (σ) ⊂ σ ——而最小截面曲率 (1) 在 (σ) 垂直于 σ 的2-维平面 σ 得到。因此,富比尼–施图迪度量经常称为有等于 4 的常全纯截面曲率。

这使 CP 成为一个(非严格的)四分之一拼挤流形(英语:Sphere theorem);一个著名的定理指出严格四分之一拼挤单连通 -流形一定同胚于球面。

富比尼–施图迪度量也是一个爱因斯坦度量,它与里奇张量成比例:存在一个常数 λ 使得对所有 , 我们有

除此以外,这蕴含着,在差一个数量相乘的意义下,富比尼–施图迪度量在里奇流下不变。这也使 CP 与广义相对论不可分离,它是真空爱因斯坦方程的一个非平凡解。

富比尼–施图迪度量可以用量子力学中广泛使用的狄拉克符号,或代数几何中的射影簇记号来定义。为了将两种语言清楚地等同起来,令

这里 { | e k } {\displaystyle \{\vert e_{k}\rangle \}} 与 上各自的度量。

相关

  • 视力视力是指视觉的灵敏度及清晰度,主要取决于眼睛视网膜中心对视觉图像的敏锐程度和大脑中视皮层对图像的解析能力。
  • 生技生物技术(英语:biotechnology),又称为生物科技,指利用生物体(含动物,植物及微生物的细胞)来生产有用的物质或改进制程,改良生物的特性,以降低成本及创新物种的科学技术。根据不同的工
  • 络脉在中医学概念中,络脉为经脉的分支,以连络表里经脉或脏腑。 络脉有三种,分别为别络、浮络、孙络。
  • 殷秀梅殷秀梅(1956年-),女,汉族,黑龙江鹤岗人,祖籍山东平阴,中国歌唱家,一级演员,全国青联常委、全国妇联执委,中国音乐家协会理事,第十二届全国人民代表大会黑龙江地区代表。1983年毕业于中央
  • 太空船2号缩尺复合体公司型号339 太空船2号(SpaceShipTwo)是一部亚轨道飞机,以携带太空游客。这飞机是由民间的太空船公司(英语:The Spaceship Company),一家由缩尺复合体公司及维珍集团共同
  • 自肃警察自肃警察(日语:自粛警察/じしゅくけいさつ  */?)是日本的俚语、互联网用语及社会风潮。新型冠状病毒感染症(COVID-19)疫情下,当局依新型流行性感冒等对策特别措置法发出紧急事态
  • 瓦西里岛区坐标:59°56′38″N 30°14′30″E / 59.94389°N 30.24167°E / 59.94389; 30.24167瓦西里岛区(俄语:Василеостро́вский райо́н,罗马化:Vasileostrovsky
  • 弗德马先生案例的真相《弗德马先生案例的真相》是一部由爱伦·坡于1845年所著的短篇小说,当时发布在期刊The Broadway Journal上。身患肺结核的弗德马先生甘愿成为主角的实验对象,主角是一名催眠师
  • 贝约正字法贝约正字法,也称作智利正字法,是由委内瑞拉语言学家安德烈斯·贝约及哥伦比亚作家胡安·加尔西亚·德尔·里约提出的对美洲西语的正字法改革。其最初于伦敦发表,当时的题目为《
  • 泉州市舶司泉州市舶司,位于今福建省泉州市鲤城区,属于中国古代海关管理机构。泉州港兴于唐,盛于宋元,衰于明中叶。据道光《晋江县志》记:市舶提举司在府治南水仙门内。有关方志记载:南薰门