铁木辛柯梁是20世纪早期由美籍俄裔科学家与工程师斯蒂芬·铁木辛柯提出并发展的力学模型。模型考虑了剪应力和转动惯性,使其适于描述短梁、层合梁以及波长接近厚度的高频激励时梁的表现。结果方程有4阶,但不同于一般的梁理论,如欧拉-伯努利梁理论,还有一个2阶空间导数呈现。实际上,考虑了附加的变形机理有效地降低了梁的刚度,结果在一稳态载荷下挠度更大,在一组给定的边界条件时预估固有频率更低。后者在高频即波长更短时效果更明显,反向剪力距离缩短时也有同样效果。
如果梁材料的剪切模量接近无穷,即此时梁为剪切刚体,并且忽略转动惯性,则铁木辛柯梁理论趋同于一般梁理论。
在静力学中铁木辛柯梁理论没有轴向影响,假定梁的位移服从于
式中
是梁上一点的坐标, 是位移矢量的三维坐标分量, 是对于梁的中性面的法向转角, 是中性面的在 方向的位移。控制方程是以下常微分方程的解耦系统:
静态条件下的铁木辛柯梁理论,若在以下条件成立时,等同于欧拉-伯努利梁理论
此时,可忽略上面控制方程的最后一项,得到有效的近似,式中
是梁的长度。对于等截面均匀梁,合并以上两个方程,
在铁木辛柯梁理论中若不考虑轴向影响,则给出梁的位移
式中
是梁内一点的坐标, 是位移矢量的三维坐标分量, 是对于梁的中性面的法向转角, 是中性面 方向的位移.从以上假设,铁木辛柯梁,考虑到振动,要用线性耦合偏微分方程描述:
其中因变量是梁的平移位移
和转角位移 。注意不同于欧拉-伯努利梁理论,转角位移是另一个变量而非挠度斜率的近似。此外,这些参数不一定是常数。
对于各向同性的线弹性均匀等截面梁,以上两个方程可合并成
如果梁的位移由下式给出
其中
是 方向的附加位移,则铁木辛柯梁的控制方程成为其中
, 是外加轴向力。任意外部轴向力的平衡依靠应力式中
是轴向应力,梁的厚度设为 。包含轴向力的梁方程合并为
如果,除轴向力外,我们考虑与速度成正比的阻尼力,形如
铁木辛柯梁的耦合控制方程成为
合并方程为
确定切变系数不是直接的,一般它必须满足:
切变系数由泊松比确定。更严格的表达方法由多位科学家完成,包括斯蒂芬·铁木辛柯、雷蒙德·明德林(Raymond D. Mindlin)、考珀(G. R. Cowper)和约翰·哈钦森(John W. Hutchinson)等。工程实践中,斯蒂芬·铁木辛柯的表达一般状况下足够好。
对于固态矩形截面:
对于固态圆形截面: