首页 >
扩散方程
✍ dations ◷ 2025-06-27 14:36:31 #扩散方程
扩散方程是一类偏微分方程,用来描述扩散现象中的物质密度的变化。通常也用来和扩散类似的现象,例如在群体遗传学中等位基因在群体中的扩散。扩散方程通常写作:其中
ϕ
(
r
→
,
t
)
{displaystyle ,phi ({vec {r}},t)}
是扩散中的物质在
t
{displaystyle t}
时刻,位于
r
→
{displaystyle {vec {r}}}
处的密度;
D
(
ϕ
,
r
→
)
{displaystyle ,D(phi ,{vec {r}})}
是密度
ϕ
{displaystyle phi }
在
r
→
{displaystyle {vec {r}}}
处的扩散系数。如果扩散系数依赖于密度那么方程是非线性的,否则是线性的。如果
D
{displaystyle ,D}
是常数,那么方程退化为下面的线性方程(热传导方程):更一般的,当D是对称正定矩阵时,方程描述的是各向异性扩散。此时方程的三维形式是:扩散方程可以直接由连续性方程导出。连续性方程系统中任何部分的密度变化取决于流入和流出该部分的物质。也就是说,没有物质被创造,也没有物质被消灭:其中
j
→
{displaystyle {vec {j}}}
是流出的扩散物质。结合菲克第一定律扩散方程可以轻易的导出,菲克第一定律假定系统中任何部分流出的扩散物质与局部的密度梯度成比例:扩散方程式考虑劳仑兹力的影响后,可以推广为能斯特普朗克方程式
相关
- SGLT2抑制剂钠-葡萄糖协同转运蛋白2抑制剂(英语:SGLT2 inhibitors,简称SGLT2抑制剂,或称列净类药物(英语:Gliflozin))是一种通过抑制葡萄糖在肾脏内重吸收而起到降糖作用的抗糖尿病药。 其原理
- 南瓜南瓜是葫芦科南瓜属的植物。“南瓜”一词可以特指南瓜属中的中国南瓜(Cucurbita moschata),也可以泛指包括笋瓜(又称印度南瓜)、西葫芦(又称美洲南瓜)等在内的其他南瓜属栽培种。其
- 威廉·詹姆士威廉·詹姆斯(英语:William James,1842年1月11日-1910年8月26日),美国哲学家、心理学家。他的弟弟亨利·詹姆斯是著名作家。他和查尔斯·桑德斯·皮尔士一起建立了实用主义。威廉
- 特殊感觉特殊感觉在医学和生理学上所说的是指一切在体感以外的感觉,包括以下四种感觉:这四种感觉的一个共同点是其感受器都位于头部。当然另一种感觉:前庭感觉的感受器也在头部,不过一般
- 埃米尔·阿道夫·冯·贝林埃米尔·阿道夫·冯·贝林(Emil Adolf von Behring,又译艾摩·阿道夫·比瑞格,1854年3月15日-1917年3月31日)是一位德国医学家、细菌学家和血清学家。他因研究了白喉的血清疗法而
- 有毒气体毒气(又称“有毒气体”或“剧毒气体”,旧称“毒气瓦斯”或“毒瓦斯”)乃气态的毒素,是对生物体有害的气体之统称。一般而言是攻击或毁损呼吸道,造成窒息或肺出血的病症。吸入过量
- 羊毛工病羊毛工病是炭疽病中透过吸入病原体的一种,其名称来自早其主要的感染者,多为接触动物制品或排泄物而受到感染。
- 石头
- 现代希腊语希腊 塞浦路斯现代希腊语(希腊语: .mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek","EB Garamond","EB Garamond 12","Foulis Greek",Cardo,"Gentium P
- J.K.罗琳乔安娜·罗琳,CH,OBE,FRSL(英语:Joanne "Jo" Rowling,1965年7月31日-),笔名J·K·罗琳(英语:J. K. Rowling)及罗柏特·加尔布雷斯(英语:Robert Galbraith),英国小说家、电影编剧及制片人,代表