首页 >
化学变化
✍ dations ◷ 2025-09-18 21:56:07 #化学变化
化学反应是一个或一个以上的物质(又称作反应物)经由化学变化转化为不同于反应物的产物的过程。化学变化定义为当一个分子接触另一个分子合成大分子;或者分子经断裂分开形成两个以上的小分子;又或者是分子内部的原子重组。为了形成变化,化学反应通常和化学键的形成与断裂有关。特别注意化学反应不会以任何方式改变原子核,而仅限于在原子外的电子云交互作用。虽然核变形后可能会引发化学反应,但是核反应与化学反应无关。化学性质是物质只能在化学变化中表现出来的性质,例如有酸碱性、氧化还原性质、热稳定性、反应性等等。有几种主要化学反应如下所示:当然还有更多复杂的情形,但仍可逐步简单化而视为上述反应类别的连续反应。化学反应的变化多端难以建立简单的分类标准。更多的例子参见化学反应列表。根据热力学第二定律,任何等温等压封闭系统倾向降低吉布斯能。在没有外力的影响下,任何反应混合物也是如此。比方,对系统中焓的分析可以得到合乎反应混合物的热力学计算。反应中焓的计算方式采用标准反应焓以及反应热加成性定律(赫士定律/盖斯定律)。以甲烷在氧中的燃烧反应为例:
C
H
4
+
2
O
2
→
C
O
2
+
2
H
2
O
{displaystyle {rm {CH_{4}+2O_{2}rightarrow CO_{2}+2H_{2}O,}}}能量计算须打断反应左侧和右侧的所有键结取得能量数据,才能计算反应物和生成物的能量差。以
Δ
H
{displaystyle Delta H}
表示能量差,
Δ
{displaystyle Delta }
(Delta)表示差异,
H
{displaystyle H}
则为焓等于固定压力下的热传导能量。ΔH的单位为千焦耳或千卡。上述法则“放热反应会自发性产生”通常是事实。但在某些状况下却不是如此,某些吸热反应,如硝酸铵溶于水的过程,虽是从环境吸收能量的反应,但仍然是自发的。这是因为反应的自发性不仅取决于反应热(焓)的变化,也与另一个热力学函数熵有关。熵是表明微观状态的混乱度的函数。对于同一反应物而言,产物中粒子可以采取的微观状态数越多,混乱程度越大,那么反应的熵变也相应地增加。吉布斯能——封闭系统在等温等压条件下向环境可能做的最大有用功,是用于判断反应自发性的一个状态函数。它综合考虑了焓与熵对反应自发性的贡献,当它为负值时,反应自发;当它为正值时,反应非自发;当它为零时,反应达到平衡态。其基本方程式如下:通过推导,还可以将吉布斯能与宇宙的熵变(系统+环境)联系起来,得到下面的方程:
Δ
S
u
n
i
v
=
−
Δ
G
T
{displaystyle {rm {Delta S_{univ}=-{frac {Delta G}{T}},}}}
。根据热力学第二定律,宇宙的熵总是倾向于增加,
Δ
S
u
n
i
v
{displaystyle {rm {Delta S_{univ}}}}
大于零,因此
Δ
G
{displaystyle Delta G}
小于零时,反应是自发的,也得到与上面相同的结论。热力学可回答“反应可能发生吗?”,另一个问题“反应多快?”却完全没有回答。这是因为热力学或者热力学平衡试着要了解的是反应混合物初始和结束状态。因此无法指出反应发生时的过程。这个领域属于反应动力学的范畴。右图称为反应坐标图,是一个常用于表明化学反应中能量变化过程的图。横坐标表示反应进程,显示的是反应物质经由反应物、过渡态,转化为产物的过程;纵坐标表示反应物质的相对能量。反应进程中能量的最高点与反应物的能量之差称为活化能,是为了使反应发生,反应物应具有的最低能量。反应需要越过一个能量高的过渡态,如同从一个谷地爬山到达另一个谷地一样。分子动力学中,为了解释化学反应的发生,人们提出了很多理论。过渡态理论认为在基元反应中,反应物分子在合适的碰撞取向上相互碰撞后,价电子云相互穿透,形成活化复合物。该络合物也就是右图中能量最高的一点,称为过渡态。这时反应物原有的化学键部分断裂,新的化学键部分地形成。如果反应完成,则旧键破裂,新键形成,转化为产物分子。另一个常见的理论是碰撞理论,它认为,反应物分子间的相互碰撞是反应进行的必要条件,并因此提出有效碰撞、活化分子、频率因子、取向因子、能量因子等概念。碰撞理论较为简单直观,对于简单的双分子反应比较适用,如果反应过于复杂,那么碰撞理论的结果往往与事实有偏差。很多看上去很简单的反应往往不是一步完成的。它们被称为非基元反应,其中的每一步反应称为基元反应。分步的化学反应往往会产生一些中间物质,称为反应中间体,它们由反应物反应得到,若进一步反应则转化为产物。而且,各基元反应的反应速率往往也不相同,较慢的反应卡住了反应进程,控制了反应的速率方程(速率与反应物浓度的关系),称为反应的速率控制步骤,简称“决速步”。化学反应的反应速率是相关受质浓度随时间改变的的测量。它总是正值。对于反应
a
A
+
b
B
→
p
P
+
q
Q
{displaystyle {rm {aA+bBrightarrow pP+qQ,}}}
,反应速率的表达式为:反应速率的分析有许多重要应用,像是化学工程学或化学平衡研究。反应速率受到下列因素的影响:反应速率与参与反应的物质浓度有关。物质浓度则可透过质量作用定律定量。每个化学反应理论上均是可逆反应。正反应中定义物质从反应物转换成产物。逆反应刖相反,产物转换成反应物。化学平衡指正反应速率和逆反应速率达到相等的状态,因此反应物和产物均会存在。然而,平衡态的反应方向可透过改变反应状态改变,譬如温度或压力。勒沙特烈原理在此用来预测是产物或反应物形成。平衡常数可用于表明反应达到平衡时反应的进行程度。对于反应
α
A
+
β
B
.
.
.
⇌
σ
S
+
τ
T
.
.
.
{displaystyle alpha A+beta B...rightleftharpoons sigma S+tau T...}
,其平衡常数可以写为
K
=
{
S
}
σ
{
T
}
τ
.
.
.
{
A
}
α
{
B
}
β
.
.
.
{displaystyle K={frac {{{S}}^{sigma }{{T}}^{tau }...}{{{A}}^{alpha }{{B}}^{beta }...}}}
。括弧代表该物质的活度,粗略计算时可以看做相应的浓度。平衡常数越大,表示达到平衡时产物越多,反应物越少,因此反应趋势或彻底性更大。平衡常数与吉布斯能之间存在如下关系:
Δ
r
G
m
⊖
=
−
R
T
ln
K
{displaystyle {Delta }_{r}G_{m}^{ominus }=-RTln K}
,根据上面对反应自发性的讨论,也可以类推出平衡常数与自发性之间的关系。K > 1时反应自发。虽然所有的反应在一些范围内均可视为微观可逆,部分反应仍可归类为不可逆反应。“不可逆反应”指得是“比较彻底的反应”,意思是几乎所有的反应物均形成产物。反应平衡常数非常大,在达到平衡时,反应物的浓度可以忽略不计。对于究竟多彻底的反应才能被称为不可逆反应,各处的评判标准不同,一般认为平衡常数大于104的反应算是比较彻底的反应。
相关
- 饥饿饥饿是动物的一种感受,产生的原因是肝的糖原水平下降到低于一个阈值。这种不快的感觉是在下丘脑产生,由肝和胃的感受器感应。一般人可以超过30天不进食而不至于死亡,但在缺水的
- 君士坦丁堡战役在拜占庭帝国时期君士坦丁堡曾多次被围攻。其中有两次君士坦丁堡被占领。一次是1204年在第四次十字军东征中被十字军攻破,另一次是1453年被穆罕默德二世统治下的奥斯曼帝国攻
- 夜班夜班可以指:
- 燃烧弹燃烧弹,有时也称纵火弹,是指装填燃烧剂,以纵火为目的弹药。近现代燃烧弹通常以白磷、铝热剂、凝固汽油等做为燃烧剂。燃烧弹概念类似火攻,在古代即有应用。如在五代时,就有将火油
- 布尔可满足性问题可满足性(英语:Satisfiability)是用来解决给定的真值方程式,是否存在一组变量赋值,使问题为可满足。布尔可满足性问题(Boolean satisfiability problem;SAT))属于决定性问题,也是第一
- Feyerabend, Paul保罗·卡尔·费耶阿本德(德语:Paul Karl Feyerabend,1924年1月13日-1994年2月11日)是一位奥地利出生的科学哲学家,以他在加利福尼亚大学伯克利分校作教授的三十余年间(1958年–1989
- 广场舞广场舞,或称广场健身舞,是一种行进间有氧健身操,是居民自发地以健身为目的在广场、院坝等开敞空间上进行的富有韵律的舞蹈,通常伴有高分贝、节奏感强的音乐伴奏,多为徒手健身,也有
- ɯ̞次闭后不圆唇元音是一种元音。在声学上,更准确的称呼应为次闭次后不圆唇元音。国际音标写作⟨ɯ̞⟩(较低(英语:Relative articulation)的)或⟨ɤ̝⟩(较高(英语:Relative articulati
- 德雷克方程式德雷克公式(Drake equation),又称萨根公式(Sagan equation)或格林班克公式(Green Bank equation),是由天文学家法兰克·德雷克(Frank Drake)于1960年代提出的一条用来推测“可能与我们
- 烧猪烧猪是广东传统食品的一种。制法与另一广东烧味烧乳猪基本一样,不同的是采用已成长的猪,而非乳猪来烧烤。烧猪以肋骨部最为肥美可口。烧猪的其他多骨部分如头、肘等可以用作淆