拉回 (微分几何)

✍ dations ◷ 2025-07-01 19:54:56 #张量,微分几何

在微分几何中,拉回是将一个流形上某种结构转移到另一个流形上的一种方法。具体地说,假设 :→ 是从光滑流形 到 的光滑映射;那么伴随有一个从 上 1- 形式(余切丛的截面)到 上 1-形式的线性映射,这个映射称为由 拉回,经常记作 *。更一般地,任何 上共变张量场——特别是任何微分形式——都可以由 拉回到 上。

当映射 是微分同胚,那么拉回与前推一起,可以将任何 上的张量场变换到 ,或者相反。特别地,如果 是 Rn 的开集与 Rn 之间的微分同胚,视为坐标变换(也许在流形 上不同的坐标卡上),那么拉回和前推描述了共变与反变张量用更传统方式(用基)表述的变换性质。

拉回概念背后的本质很简单,是一个函数和另外一个函数的前复合。但是将这种想法运用到许多不同的情形,可以构造许多复杂的拉回。本文从简单的操作开始,然后利用它们构造更复杂的。粗略地讲,拉回手法(利用前复合)将微分几何中多种不同的结构变成反变函子。

设 φ:→ 是光滑流形 与 之间的光滑映射,假设 :→R 是 上一个光滑函数。则 通过 φ 的拉回是 上的光滑函数 φ*,定义为(φ*)() = (φ())。类似地,如果 是 中开集 上的光滑函数,则相同的公式定义了 中开集 -1() 上一个光滑函数。用层的语言说,拉回定义了 上光滑函数层到 φ 的直接像(在 上光滑函数层中)的一个态射。

更一般地,如果 :→ 是从 到任意其他流形 的的光滑映射,则φ*()=(φ()) 是从 到 的一个光滑映射。

如果 是 上一个向量丛(或任意纤维丛),:→ 是光滑映射,那么拉回丛 * 是 上一个向量丛(或更一般地纤维丛),其 中的点 处的纤维由 (*) = () 给出。

在此情形,前复合定义了 上截面的一个变换:如果 是 上 的一个截面,那么拉回截面 φ s = s φ {\displaystyle \varphi ^{*}s=s\circ \varphi } 上拉回丛 * 的一个截面。

设 Φ:→ 是向量空间 与 之间的一个线性映射(即,Φ 是 (,) 中的元素,也记成 Hom(,)),设

是 上一个多重线性形式(也称为 (0,) 阶张量——但不要和张量场混淆——这里 是乘积中 的因子的个数)。则 由 Φ 的拉回 Φ* 是一个 上的多重线性形式,定义为 与 Φ 的前复合。准确地,给定 中向量 1,2,...,, Φ* 由公式定义

这是 上一个多重线性形式。从而 Φ* 是一个从 上的多重线性形式到 上的多重线性形式的(线性)算子。作为一个特例,注意到如果 是 上一个线性形式(或 (0,1) -张量),那么 是 的对偶空间 * 中一个元素,则 Φ* 是 * 中一个元素,所以拉回定义了对偶空间之间一个线性映射,作用的方向与线性映射 Φ 自己的方向相反:

从张量的观点来看,自然想把来回这种概念推广到任何阶,即 上取值于 个 的张量积 W W W {\displaystyle W\otimes W\otimes \cdots \otimes W} ,) 阶张量一个拉回算子。

设  : → 是光滑流形间的光滑映射。那么 的前推:* = d (或 ),是从 的切丛 到拉回丛 * 的(在 上)向量丛同态。从而 * 的转置是从 ** 到 的余切丛 * 的丛映射。

现在假设 是 * 的一个截面( 上一个 1-形式),将 与 前复合得到 ** 的一个拉回截面。将上述(逐点)丛映射应用到截面导致 由 的拉回,是 上一个 1-形式,定义为:

对 属于 与 属于

对任何自然数 ,上述构造马上可推广到 (0,) 阶张量丛上。流形 上 (0,) 张量场 是 上张量丛的一个截面,在 中 点的截面是多重线性 -形式空间

取 Φ 等于从 到 的一个光滑映射的微分(逐点的),多重线性形式的拉回可与截面的拉回复合得出 上 (0,) 张量场的拉回。更确切地,如果 是 上一个 (0,)-张量场,那么 由 的拉回 是 上 (0,)-张量场 *,定义为

对 属于 与 属于

共变张量场拉回的一个特别重要的例子是微分形式的拉回。如果 α 是一个微分 -形式,即 (逐点)反交换 -形式组成的外丛 Λ* 的一个截面,则 α 的拉回是 上一个微分 -形式,定义与上一节相同:

对 属于 与 属于

微分形式的拉回有两个性质,使其非常有用。

1. 和楔积相容:假设同上,对 上的微分形式 α 与 β,

2. 和外导数 d 相容:如果 α 是 上一个微分形式,则

当流形之间的映射 是微分同胚,即有一个光滑逆函数,则在向量场上也像 1-形式一样定义拉回,从而通过扩张,对流形上任何混合张量场都可拉回。线性映射

可逆,给出

一个一般的混合型张量场通过张量积分解为 与 两部分,分别用 Φ 与 Φ-1 变换。当 = 时,则拉回和前推刻画了流形 上张量场的变换性质。用传统术语说,拉回描述了张量共变指标的变换性质;相对地,反变指标的变换性质由前推给出。

上一节的构造有一个代表性特例,若 是流形 到自己的微分同胚。在这种情况下,导数 d 是 (,*) 的一个截面。这样便在通过一个一般线性群 () ( = dim ) 相配于 的标架丛 () 的任何丛的截面上导出了拉回作用。

将上述想法应用到由向量场 定义的微分同胚单参数群,对参数求导,得到了任意丛上的李导数概念。

如果 {\displaystyle \nabla } 上向量丛 的联络(或共变导数), 是从 到 的光滑映射,那么在 上的向量丛 * 上有拉回联络 φ {\displaystyle \varphi ^{*}\nabla } ,由等式

惟一确定。

相关

  • 尾节尾节(英语:Telson),又称尾柄,为节肢动物身体分节的最末节,没有附肢也没有神经节,因此并不是真正的体节。不同类群的节肢动物其尾节的形状与用途不尽然相同。海螯虾、真虾下目与其他
  • 高钾血症高钾血症(拉丁语:hyperkalemia、hyperkalaemia),即生物体内血中含钾离子(K+)含量过多。人体 95%的钾元素位于细胞内,仅 5%位于血液中,而钠钾泵正是保持此浓度差的主要机制。血清正常
  • 本因坊秀哉本因坊秀哉(1874年6月24日-1940年1月18日),日本围棋棋手,本名田村保寿,生于东京芝樱田町,父亲田村保永。法名日温。保寿十岁进入方圆社,受村濑秀甫五子,之后开始做方圆社的塾生。十三
  • 杜费尔古省坐标:9°46′00″N 1°06′00″E / 9.7667°N 1.1000°E / 9.7667; 1.1000杜费尔古省(法语:Préfecture de Doufelgou),是多哥的30个省份之一,位于该国中北部,由卡拉区负责管辖,首府
  • 艾瑞伯特·海姆纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 方光圻方光圻(1898年-1968),字“千里”,江苏江都(今江苏省扬州市江都区)人,清光绪二十四年(1898年) 生,物理学家,光学家。
  • 娜兹莉·萨布里娜兹莉·萨布里(土耳其语:Nazlı Sabri,阿拉伯语:نزلي صبري‎,1894年6月25日-1978年5月29日),埃及首任王后。她是国王福阿德一世的第二任妻子。萨布里来自一个有土耳其和法
  • 许乃钊许乃钊(1799年-1878年),字贞恒,号信臣,又号恂普,浙江钱塘(今杭州市)人,清朝政治人物。许乃钊为道光十五年(1835年)进士。授编修。历任国史馆总纂官,河南、广东学政,内阁学士兼礼部侍郎衔,江
  • 酸性泥炭沼泽酸性泥炭沼泽即酸沼(英文:bog),是一种泥炭沼泽,该种湿地有酸性泥炭与死亡植物(通常为苔藓,多半为泥炭藓属.,在北极地区则可能为地衣)的积累。由于营养不足,典型植物为水藓。累积大量死
  • 劳拉·马拉诺劳拉·马拉诺(英语:Laura Marano,1995年11月29日-) 为一名美国女演员与歌手。 她曾出现于影集《失踪现场》以及《回到你身边(英语:Back to You)》,两部都是饰演主要角色的女儿。2011