裴蜀定理

✍ dations ◷ 2025-04-26 12:54:58 #丢番图方程,数学定理,数论

在数论中,裴蜀等式(英语:Bézout's identity)或裴蜀定理(Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数 a {\displaystyle a} a {\displaystyle a} 和互素。

裴蜀等式也可以用来给最大公约数定义: d {\displaystyle d} )第二版中给出了问题的描述和证明。

然而,裴蜀推广了梅齐里亚克的结论,特别是探讨了多项式中的裴蜀等式,并给出了相应的定理和证明。

对任意两个整数 a {\displaystyle a} d {\displaystyle d} b {\displaystyle b} 中任意一个正元素 p {\displaystyle p} 中任意一个正元素都是 d 0 {\displaystyle d_{0}} ,) 满足 | x | | b / d | {\displaystyle |x|\leq |b/d|} | y | | a / d | {\displaystyle |y|\leq |a/d|} ,等号只会在 a {\displaystyle a} b {\displaystyle b} 其中一个是另一个的倍数时成立。辗转相除法给出的解会是这两解中的一个。

裴蜀方程 504 x + 651 y = 14 {\displaystyle 504x+651y=14} 没有整数解,因为504和651的最大公约数是21。而方程 504 x + 651 y = 21 {\displaystyle 504x+651y=21} 是有解的。为了求出通解,可以先约掉公约数21,这样得到方程:

通过扩展欧几里得算法可以得到一组解 ( 9 , 7 ) {\displaystyle (-9,7)} 24 ( 9 ) + 31 7 = 216 + 217 = 1 {\displaystyle 24\cdot (-9)+31\cdot 7=-216+217=1}

于是通解为: { ( 1 9 + 31 k , 1 7 24 k ) | k Z } {\displaystyle \left\{\left(1\cdot -9+31k,1\cdot 7-24k\right)|k\in \mathbb {Z} \right\}} ,即

a 1 , a n {\displaystyle a_{1},\cdots a_{n}} n {\displaystyle n} 个整数, d {\displaystyle d} 是它们的最大公约数,那么存在整数 x 1 , x n {\displaystyle x_{1},\cdots x_{n}} 使得 x 1 a 1 + x n a n = d {\displaystyle x_{1}\cdot a_{1}+\cdots x_{n}\cdot a_{n}=d} 。特别来说,如果 a 1 , a n {\displaystyle a_{1},\cdots a_{n}} 互质(不是两两互质),那么存在整数 x 1 , x n {\displaystyle x_{1},\cdots x_{n}} 使得 x 1 a 1 + x n a n = 1 {\displaystyle x_{1}\cdot a_{1}+\cdots x_{n}\cdot a_{n}=1}

K {\displaystyle K} 为域时,对于多项式环 K {\displaystyle K} 里的多项式,裴蜀定理也成立。设有一族 K {\displaystyle \mathbb {K} } 里的多项式 ( P i ) i I {\displaystyle \left(P_{i}\right)_{i\in I}} 。设 Δ {\displaystyle \Delta } 为它们的最大公约式(首项系数为1且次数最高者),那么存在多项式 ( A i ) i I {\displaystyle \left(A_{i}\right)_{i\in I}} 使得 Δ = i I A i P i {\displaystyle \textstyle \Delta =\sum _{i\in I}A_{i}P_{i}} 。特别来说,如果 ( P i ) i I {\displaystyle \left(P_{i}\right)_{i\in I}} 互质(不是两两互质),那么存在多项式 ( A i ) i I {\displaystyle \left(A_{i}\right)_{i\in I}} 使得 i I A i P = 1 {\displaystyle \textstyle \sum _{i\in I}A_{i}P_{=}1}

对于两个多项式的情况,与整数时一样可以得到通解。

裴蜀可以推广到任意的主理想环上。设环 A {\displaystyle A} 是主理想环, a {\displaystyle a} b {\displaystyle b} 为环中元素, d {\displaystyle d} 是它们的一个最大公约元,那么存在环中元素 x {\displaystyle x} y {\displaystyle y} 使得:

这是因为在主理想环中, a {\displaystyle a} b {\displaystyle b} 的最大公约元被定义为理想 a A + b A {\displaystyle aA+bA} 的生成元。

相关

  • 新发传染病新兴传染病一般定义是近二十年以来,新出现在人类身上的传染病,而该疾病的发生率除了有快速增加的趋势,且在地理分布上有扩张的情况,甚至发展出新的抗药性机制等 ,都可以算是新兴
  • 创世纪《创世记》(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
  • 劳伦斯世界体育奖-年度体育精神奖劳伦斯世界体育奖(英语:Laureus World Sports Awards)是由劳伦斯世界体育学会主办的一个年度体育界奖项,用于表彰奖励在过去一年中表现突出的体育运动员。奖项主要分为7个项目,其
  • 汉纪《汉纪》,共30卷,约18万余言,为中国古代的编年体史书,是中国第一部编年断代体史书,在四库全书之中为史部。作者为东汉的荀悦,汉献帝时常苦班固的《汉书》文繁难省,于建安三年(198年)
  • 埃迪尔内埃迪尔内(土耳其语:Edirne),或称哈德良堡或阿德里安堡(拉丁语:Hadrianopolis),因罗马皇帝哈德良所建而得名。土耳其语埃迪尔内是希腊语阿德里安堡的音译,故两种称呼并不是两个不同的
  • KJALKJAL(585 AM)是位于美属萨摩亚的一个宗教广播电台,在2002年开播。发射地位于塔富纳,覆盖整个美属萨摩亚,属于亚太媒体部门。KJAL在早期称为WDJD,但是在美国联邦通信委员会的要求下
  • 帕罗拉帕罗拉(Parola),是印度马哈拉施特拉邦Jalgaon县的一个城镇。总人口34800(2001年)。该地2001年总人口34800人,其中男性18010人,女性16790人;0—6岁人口4656人,其中男2463人,女2193人;识
  • 大戟科大戟科(学名:Euphorbiaceae)是被子植物的第七大科,属真双子叶植物金虎尾目中的一个大科,有224属大约6,400种。中国有66属370种。台湾有25属80种。大戟科原来包含非常广泛的植物,但
  • 鄚子潢鄚子潢(越南语:Mạc Tử Hoàng/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","M
  • 埃斯基奈斯埃斯基奈斯(前390年-前322年),生于雅典,演说家,德摩斯提尼劲敌,仅有三篇演说辞传世。面对腓力二世所率领的马其顿人扩张,他于公元前346年被埃乌布卢斯(Eubulus)派往阿卡狄亚,奉命提出希