裴蜀定理

✍ dations ◷ 2025-08-27 13:30:02 #丢番图方程,数学定理,数论

在数论中,裴蜀等式(英语:Bézout's identity)或裴蜀定理(Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数 a {\displaystyle a} a {\displaystyle a} 和互素。

裴蜀等式也可以用来给最大公约数定义: d {\displaystyle d} )第二版中给出了问题的描述和证明。

然而,裴蜀推广了梅齐里亚克的结论,特别是探讨了多项式中的裴蜀等式,并给出了相应的定理和证明。

对任意两个整数 a {\displaystyle a} d {\displaystyle d} b {\displaystyle b} 中任意一个正元素 p {\displaystyle p} 中任意一个正元素都是 d 0 {\displaystyle d_{0}} ,) 满足 | x | | b / d | {\displaystyle |x|\leq |b/d|} | y | | a / d | {\displaystyle |y|\leq |a/d|} ,等号只会在 a {\displaystyle a} b {\displaystyle b} 其中一个是另一个的倍数时成立。辗转相除法给出的解会是这两解中的一个。

裴蜀方程 504 x + 651 y = 14 {\displaystyle 504x+651y=14} 没有整数解,因为504和651的最大公约数是21。而方程 504 x + 651 y = 21 {\displaystyle 504x+651y=21} 是有解的。为了求出通解,可以先约掉公约数21,这样得到方程:

通过扩展欧几里得算法可以得到一组解 ( 9 , 7 ) {\displaystyle (-9,7)} 24 ( 9 ) + 31 7 = 216 + 217 = 1 {\displaystyle 24\cdot (-9)+31\cdot 7=-216+217=1}

于是通解为: { ( 1 9 + 31 k , 1 7 24 k ) | k Z } {\displaystyle \left\{\left(1\cdot -9+31k,1\cdot 7-24k\right)|k\in \mathbb {Z} \right\}} ,即

a 1 , a n {\displaystyle a_{1},\cdots a_{n}} n {\displaystyle n} 个整数, d {\displaystyle d} 是它们的最大公约数,那么存在整数 x 1 , x n {\displaystyle x_{1},\cdots x_{n}} 使得 x 1 a 1 + x n a n = d {\displaystyle x_{1}\cdot a_{1}+\cdots x_{n}\cdot a_{n}=d} 。特别来说,如果 a 1 , a n {\displaystyle a_{1},\cdots a_{n}} 互质(不是两两互质),那么存在整数 x 1 , x n {\displaystyle x_{1},\cdots x_{n}} 使得 x 1 a 1 + x n a n = 1 {\displaystyle x_{1}\cdot a_{1}+\cdots x_{n}\cdot a_{n}=1}

K {\displaystyle K} 为域时,对于多项式环 K {\displaystyle K} 里的多项式,裴蜀定理也成立。设有一族 K {\displaystyle \mathbb {K} } 里的多项式 ( P i ) i I {\displaystyle \left(P_{i}\right)_{i\in I}} 。设 Δ {\displaystyle \Delta } 为它们的最大公约式(首项系数为1且次数最高者),那么存在多项式 ( A i ) i I {\displaystyle \left(A_{i}\right)_{i\in I}} 使得 Δ = i I A i P i {\displaystyle \textstyle \Delta =\sum _{i\in I}A_{i}P_{i}} 。特别来说,如果 ( P i ) i I {\displaystyle \left(P_{i}\right)_{i\in I}} 互质(不是两两互质),那么存在多项式 ( A i ) i I {\displaystyle \left(A_{i}\right)_{i\in I}} 使得 i I A i P = 1 {\displaystyle \textstyle \sum _{i\in I}A_{i}P_{=}1}

对于两个多项式的情况,与整数时一样可以得到通解。

裴蜀可以推广到任意的主理想环上。设环 A {\displaystyle A} 是主理想环, a {\displaystyle a} b {\displaystyle b} 为环中元素, d {\displaystyle d} 是它们的一个最大公约元,那么存在环中元素 x {\displaystyle x} y {\displaystyle y} 使得:

这是因为在主理想环中, a {\displaystyle a} b {\displaystyle b} 的最大公约元被定义为理想 a A + b A {\displaystyle aA+bA} 的生成元。

相关

  • 地球大气层地球大气层,又称大气圈,因重力关系而围绕着地球的一层混合气体,是地球最外部的气体圈层,包围着海洋和陆地,大气圈没有确切的上界,在离地表2000-16000公里高空仍有稀薄的气体和基本
  • 激光矯视激光矫视指以激光永久改变眼角膜的弧度,达致矫正视力的目的。激光矫视能矫正近视、远视、散光等视力问题;但不能矫正老花及近视所引起的眼疾风险和眼底问题(如视网膜脱落、白内
  • 辛格彼得·辛格(英语:Peter Albert David Singer 1946年7月6日-)著名澳大利亚哲学家,现代效益主义代表人物,动物解放运动活动家,美国普林斯顿大学生物伦理学教授,澳大利亚墨尔本大学应用
  • 沃克吕兹省沃克吕兹省(法语:Vaucluse)是法国普罗旺斯-阿尔卑斯-蓝色海岸大区所辖的省份。该省编号为84。它属于普罗旺斯-阿尔卑斯-蓝色海岸大区,位于法国的东南部,这个省的名字来自于沃克吕
  • 公共电视网公共广播电视公司(英语:Public Broadcasting Service),也译作“美国公共电视网”或“美国公共电视台”,是美国公共电台和电视台节目发行渠道。它是一家非盈利组织,同时也是在美国
  • 辽宁省乡级以上行政区列表中华人民共和国辽宁省乡级以上行政区包括中华人民共和国辽宁省的地级行政区、县级行政区和乡级行政区。辽宁省共有14个地级行政区,这14个地级行政区均为地级市;100个县级行政
  • 网纹长颈鹿网纹长颈鹿(学名:Giraffa camelopardalis reticulata),俗称索马里长颈鹿(Somali giraffe),是原生于索马里、埃塞俄比亚南部以及肯亚北部的长颈鹿亚种。在人工饲育或是在野外接触亚
  • Ampaw是一种菲律宾食品(英语:Filipino cuisine),意指用米香制成的爆米花。而在宿雾语中,也是一种委婉词用法,意思是指一个人空谈理论,不能解决实际问题。 means "puffed grain" in Phili
  • 李贞淑李贞淑(1954年1月18日-2015年12月22日),中华人民共和国吉林省延边朝鲜族自治州出身的著名歌手,在中国朝鲜族社会是家喻户晓的歌手。李贞淑出生于吉林省安图县,国家一级演员、中国
  • 龙舌兰亚科龙舌兰亚科(学名:Agavoideae)包括多种生长在沙漠或干旱地带的植物,有18个属大约550-600种,分布在世界各地的热带、亚热带和暖温带地区。不过最新的APG II 分类法根据分子生物学的