对称群 (n次对称群)

✍ dations ◷ 2025-11-21 01:55:07 #置换群,有限群,抽象代数,对称

数学上,集合上的对称群记作S或Sym()。它的元素是所有到自身的双射。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym()。两个函数的复合一般记作 o ,在置换群的表示里简记作。

对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。

各种置换群中,有限集合上的置换群有着特殊的重要性。

称上的对称群是S。上所有的排列构成了全部一一映射的集合,因此,S有!个元素。对 > 2,S不是阿贝尔群。当且仅当 ≤ 4时,S是可解群。对称群的子群称为置换群。

对称群中,两个置换的乘积就是指双射函数的复合,由符号"∘"(U+2218 ∘ )来表示,也可以省略。例如:

与的复合应先适用,其后适用。那么在中的次序1将先被映射为元素2,然后再由 的次序2变换成元素2,的次序2先映射为5,然后由 的次序5变换成4;3被 变换成5,如此类推。所以 乘以是:

容易证明长度为L =的轮换(或称循环,如下节叙述),它的次方会分解为个长度为的轮换。比如( = 2, = 3):

对换指只交换集合中的两个元素而使其他元素仍变换到自身的置换,例如(1 3)。每个置换都能写成一系列对换的乘积。比如上例中的 = (1 2)(2 5)(3 4)。

由于能被写成奇数个对换的乘积,是一个奇置换。与此相反的,是一个偶置换。

一个置换表达成对换乘积的方式不是唯一的,但每种表达方式中对换的个数的奇偶性不变,可以据此定义奇置换和偶置换。

两个偶置换的乘积是偶置换,两个奇置换的乘积是偶置换,奇置换和偶置换的乘积是奇置换,偶置换和奇置换的乘积是奇置换。于是可以定义置换的正负号(sign):

在这个定义下,

是一个群同态。({+1,-1}关于乘法构成群),这个同态的同态核是所有的偶置换,称作n次交错群,记作A。它是S的正规子群,有! / 2个元素。

置换的正负号也可以定义为:

其中n-O(n)表示置换的轮换指数,O(n)表示置换的轨道(orbit)数。群S是A和由一个单一对换生成的任何子群的半直积。

轮换指一种置换,使得对集合{1,...,}中的某个,, (), 2(), ..., () = 是作用下不映射到自身的所有元素。比如说,以下的置换

就是一个轮换。因为(1) = 4, (3) = 1,(4) = 3。2,5不变。我们将这个轮换记作(1 4 3),它的长度是3。轮换的阶数等于它的长度。如果两个轮换移动的元素皆不相同,则称它们不交。不交的轮换是可交换的,例如(3 1 4)(2 5 6) = (2 5 6)(3 1 4)。每个S中的元素都可以写成若干个互不相交的轮换的乘积。如果不计轮换的排列次序,这种表示是唯一的。

S的共轭类是对于置换轮换表达的结构来说的。两个置换共轭,当且仅当在它们的轮换表达中,轮换的数量以及长度都相等。比如说,在S5中, (1 2 3)(4 5)与(1 4 3)(2 5)共轭,但不与(1 2)(4 5)共轭。

推论:任意有限群都与某个置换群同构。

相关

  • 视觉视觉是通过视觉系统的外周感觉器官(眼)接受外界环境中一定波长范围内的电磁波刺激,经中枢有关部分进行编码加工和分析后获得的主观感觉。至少有80%以上的外界信息经视觉获得,因
  • Opisthokonta后鞭毛生物(学名:Opisthokont)是真核生物的一个范围广泛的主要类群,包括动物和真菌界,以及原生生物的领鞭毛虫门和Mesomycetozoa。基因和超结构的研究都强烈地支持后鞭毛生物会形
  • 足厥阴肝经足厥阴肝经(Liver Meridian of Foot-Jueyin,LR)是一条经脉,十二正经之一,与足少阳胆经相表里。本经起于大敦,止于期门,左右各14个腧穴。在中医学上,肝经脉为诸筋之主导经脉。起于足
  • 流行性脑膜炎流行性脑膜炎又名流行性脑脊髓膜炎(Epidemic meningitis),简称流脑。冬春季节是此病的高发期,发病高峰一般出现在每年的3月~4月份。如及早发现,及早治疗,本病治愈率较高。流行性脑
  • 文学史文学史是一个学科,专门研究文学发展历史。文学有着悠久的历史,实际从人类有了语言后,口头文学就已经出现,自从人类发明了记录书写的工具-文字后,记录文学即开始产生,当然并不是所
  • 中央研究院第一届院士中央研究院第一届院士于民国三十七年(1948年)由中华民国中央研究院选举产生。该届也是迄今唯一在中国大陆选出的院士。
  • 蒲巴甲悟泽·蒲巴甲(1985年7月8日-),四川省阿坝藏族羌族自治州人,藏族,身高179CM。中国大陆演员、歌手。2006年获得东方卫视《加油好男儿》全国总冠军而出道至今。未收录专辑的单曲2007
  • 灰甲甲癣(onychomycosis),俗称臭甲、灰指甲,泛指受到真菌感染的指甲,通常影响脚趾,但手指甲也有可能出现。两成指甲病是由甲癣所引起。甲癣的成因是真菌感染,主要细为分酵母菌感染、霉
  • 下町下町(日语:下町/したまち  */?)是日本地理名词,有地形、人文地理等两种领域的用法。地形上指城市中靠近河岸、海边等低地的区域,人文地理上则从地形用法延伸,用以指称古代城市中
  • 白铁白铁(Galvanized iron,简称 G.I.),为一歧异语在中国大陆地区多指涉镀锌铁、镀锌钢,是镀上锌的铁或钢,镀锌可来防止钢铁生锈氧化,所以很多家庭用品及公共建设如通风槽多采用白铁,虽成