对称群 (n次对称群)

✍ dations ◷ 2025-06-08 10:02:33 #置换群,有限群,抽象代数,对称

数学上,集合上的对称群记作S或Sym()。它的元素是所有到自身的双射。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym()。两个函数的复合一般记作 o ,在置换群的表示里简记作。

对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。

各种置换群中,有限集合上的置换群有着特殊的重要性。

称上的对称群是S。上所有的排列构成了全部一一映射的集合,因此,S有!个元素。对 > 2,S不是阿贝尔群。当且仅当 ≤ 4时,S是可解群。对称群的子群称为置换群。

对称群中,两个置换的乘积就是指双射函数的复合,由符号"∘"(U+2218 ∘ )来表示,也可以省略。例如:

与的复合应先适用,其后适用。那么在中的次序1将先被映射为元素2,然后再由 的次序2变换成元素2,的次序2先映射为5,然后由 的次序5变换成4;3被 变换成5,如此类推。所以 乘以是:

容易证明长度为L =的轮换(或称循环,如下节叙述),它的次方会分解为个长度为的轮换。比如( = 2, = 3):

对换指只交换集合中的两个元素而使其他元素仍变换到自身的置换,例如(1 3)。每个置换都能写成一系列对换的乘积。比如上例中的 = (1 2)(2 5)(3 4)。

由于能被写成奇数个对换的乘积,是一个奇置换。与此相反的,是一个偶置换。

一个置换表达成对换乘积的方式不是唯一的,但每种表达方式中对换的个数的奇偶性不变,可以据此定义奇置换和偶置换。

两个偶置换的乘积是偶置换,两个奇置换的乘积是偶置换,奇置换和偶置换的乘积是奇置换,偶置换和奇置换的乘积是奇置换。于是可以定义置换的正负号(sign):

在这个定义下,

是一个群同态。({+1,-1}关于乘法构成群),这个同态的同态核是所有的偶置换,称作n次交错群,记作A。它是S的正规子群,有! / 2个元素。

置换的正负号也可以定义为:

其中n-O(n)表示置换的轮换指数,O(n)表示置换的轨道(orbit)数。群S是A和由一个单一对换生成的任何子群的半直积。

轮换指一种置换,使得对集合{1,...,}中的某个,, (), 2(), ..., () = 是作用下不映射到自身的所有元素。比如说,以下的置换

就是一个轮换。因为(1) = 4, (3) = 1,(4) = 3。2,5不变。我们将这个轮换记作(1 4 3),它的长度是3。轮换的阶数等于它的长度。如果两个轮换移动的元素皆不相同,则称它们不交。不交的轮换是可交换的,例如(3 1 4)(2 5 6) = (2 5 6)(3 1 4)。每个S中的元素都可以写成若干个互不相交的轮换的乘积。如果不计轮换的排列次序,这种表示是唯一的。

S的共轭类是对于置换轮换表达的结构来说的。两个置换共轭,当且仅当在它们的轮换表达中,轮换的数量以及长度都相等。比如说,在S5中, (1 2 3)(4 5)与(1 4 3)(2 5)共轭,但不与(1 2)(4 5)共轭。

推论:任意有限群都与某个置换群同构。

相关

  • 场地障碍赛场地障碍赛为马术三项赛中的其中一项,于1866年,巴黎举行首届格兰披治场地障碍赛赛,于1900年则确认为奥运会项目。骑手和马匹要求在35米乘60米、45米乘70米或70米乘90米的场地中
  • 果酸果酸(AHA、α-Hydroxy acids、alpha hydroxy acids),是指由多种天然蔬果中所萃取的自然酸,由于绝多数均自水果中提炼,因而俗称为果酸,但也有人工合成的。这类有机酸中,羟基取代了和
  • MMDS多信道多点分发服务(英语:Multichannel Multipoint Distribution Service,缩写MMDS),旧称宽带无线电服务(Broadband Radio Service,缩写BRS),也称无线电缆(Wireless Cable),是一个无线电
  • 碳足迹碳足迹亦译碳足印,盖指每个人、家庭或每家公司日常释放的温室气体数量(以二氧化碳即CO2的影响为单位),用以衡量人类活动对生态环境的影响。根据以下步骤,可以有效减少碳足迹:最后
  • 北安第斯板块北安地斯板块(North Andes Plate)是南美洲的小型板块,位于安地斯山脉北部,受南美洲板块和纳斯卡板块挤压。由于纳斯卡板块沉入北安地斯板块,因此这个地区经常发生地震和火山爆发
  • 马蝇见内文虻科(学名Tabanidae),又名马蝇,是双翅目下的一科,其中昆虫主要靠吸食哺乳动物的血液维生。根据ITIS,虻科分为: 下科Chrysopsinae: Merycomyia Chrysops Neochrysops Silviu
  • 文昌帝君文昌帝君,即文昌武烈梓潼帝君,简称梓潼帝君、文昌君,是保护文运与考试的神祇。中国有“北孔子、南文昌”之说,可见南方文昌帝君信仰之盛。文昌帝君是蜀王张育、梓潼神亚子与文昌
  • 林耕华林耕华(1938年1月11日-),台湾光电专家,第22届中央研究院院士,原籍福建漳州东山岛。高中就读台南二中,1959年毕业于国立成功大学电机工程学系,1963年获得美国西雅图华盛顿大学电机研
  • 胡安·安东尼奥·比亚加亚斯胡安·安东尼奥·比亚加亚斯(1922年生于西班牙托雷多;逝于2001年8月21日)西班牙诗人,散文家,评论家。于1922年出生在托雷多。内战使他停止了高中的学业。之后在梅利利亚和阿朗山
  • 尼马·阿尔卡尼-哈米德尼马·阿尔卡尼-哈米德(英语:Nima Arkani-Hamed,1972年4月5日-),加拿大/美国理论物理学家,研究方向为高能物理、弦理论和宇宙学。曾任哈佛大学和加州大学伯克利分校教授,现为普林斯