对称群 (n次对称群)

✍ dations ◷ 2025-05-18 03:25:37 #置换群,有限群,抽象代数,对称

数学上,集合上的对称群记作S或Sym()。它的元素是所有到自身的双射。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym()。两个函数的复合一般记作 o ,在置换群的表示里简记作。

对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。

各种置换群中,有限集合上的置换群有着特殊的重要性。

称上的对称群是S。上所有的排列构成了全部一一映射的集合,因此,S有!个元素。对 > 2,S不是阿贝尔群。当且仅当 ≤ 4时,S是可解群。对称群的子群称为置换群。

对称群中,两个置换的乘积就是指双射函数的复合,由符号"∘"(U+2218 ∘ )来表示,也可以省略。例如:

与的复合应先适用,其后适用。那么在中的次序1将先被映射为元素2,然后再由 的次序2变换成元素2,的次序2先映射为5,然后由 的次序5变换成4;3被 变换成5,如此类推。所以 乘以是:

容易证明长度为L =的轮换(或称循环,如下节叙述),它的次方会分解为个长度为的轮换。比如( = 2, = 3):

对换指只交换集合中的两个元素而使其他元素仍变换到自身的置换,例如(1 3)。每个置换都能写成一系列对换的乘积。比如上例中的 = (1 2)(2 5)(3 4)。

由于能被写成奇数个对换的乘积,是一个奇置换。与此相反的,是一个偶置换。

一个置换表达成对换乘积的方式不是唯一的,但每种表达方式中对换的个数的奇偶性不变,可以据此定义奇置换和偶置换。

两个偶置换的乘积是偶置换,两个奇置换的乘积是偶置换,奇置换和偶置换的乘积是奇置换,偶置换和奇置换的乘积是奇置换。于是可以定义置换的正负号(sign):

在这个定义下,

是一个群同态。({+1,-1}关于乘法构成群),这个同态的同态核是所有的偶置换,称作n次交错群,记作A。它是S的正规子群,有! / 2个元素。

置换的正负号也可以定义为:

其中n-O(n)表示置换的轮换指数,O(n)表示置换的轨道(orbit)数。群S是A和由一个单一对换生成的任何子群的半直积。

轮换指一种置换,使得对集合{1,...,}中的某个,, (), 2(), ..., () = 是作用下不映射到自身的所有元素。比如说,以下的置换

就是一个轮换。因为(1) = 4, (3) = 1,(4) = 3。2,5不变。我们将这个轮换记作(1 4 3),它的长度是3。轮换的阶数等于它的长度。如果两个轮换移动的元素皆不相同,则称它们不交。不交的轮换是可交换的,例如(3 1 4)(2 5 6) = (2 5 6)(3 1 4)。每个S中的元素都可以写成若干个互不相交的轮换的乘积。如果不计轮换的排列次序,这种表示是唯一的。

S的共轭类是对于置换轮换表达的结构来说的。两个置换共轭,当且仅当在它们的轮换表达中,轮换的数量以及长度都相等。比如说,在S5中, (1 2 3)(4 5)与(1 4 3)(2 5)共轭,但不与(1 2)(4 5)共轭。

推论:任意有限群都与某个置换群同构。

相关

  • 留尼汪坐标:21°06′52″S 55°31′57″E / 21.11444°S 55.53250°E / -21.11444; 55.53250 留尼汪大区(法语:La Réunion),通称留尼汪,是一座印度洋西部马斯克林群岛中的火山岛。为法
  • 转译医学转译医学(translational medicine, 又称转化医学)是指将基础医学的研究,能够直接和临床治疗上连结的一个新的思维。最早由美国国家卫生研究院(National Institute of Health, NI
  • 纽斯特利亚纽斯特利亚 (Neustria)是法国的一个历史上的区域,这一地区是法兰克王国在511年获得的土地,范围南起阿基坦,北至英吉利海峡,包括了现在法国北部大部分地区,巴黎和苏瓦松均位于这一地
  • SN 1987A环绕1987 A的环圈和在中心来自超新星爆炸的环圈SN 1987A是1987年2月24日在大麦哲伦云内发现的一次超新星爆发,是自1604年开普勒超新星(SN 1604)以来观测到的最明亮的超新星爆发
  • 刀耕火种刀耕火种,或称刀耕火耨、火耕,是一种以砍伐及焚烧林地上的植物来获得耕地的古老农业技术。农民首先会砍伐一个地区的树木及木本植物,待树木干燥后再作焚烧,此举所产生的富含营养
  • 全国产业复兴法《全国工业复兴法》(英语:National Industrial Recovery Act of 1933, NIRA,又译为全国产业复兴法)是美国国会于1933年制订的劳工法案和消费者保护法案,授权总统富兰克林·罗斯福
  • 黑海番鸭黑海番鸭(学名:Melanitta nigra)为鸭科海番鸭属的鸟类,俗名美洲黑凫。分布于北半球较冷地区、欧洲、北美洲、亚洲、非洲,包括中国大陆的江苏、福建等地,多栖息于海洋、海港以及河
  • 上栗县上栗县是中国江西省萍乡市下辖的一个县,位于萍乡市北部。全县辖6镇4乡1场,共199个村,10个社区,总人口约47万,其中农业人口约40万,占人口总数的88%,人口密度为630人/平方公里。东西宽
  • 舛部舛部,为汉字索引中的部首之一,康熙字典214个部首中的第一百三十六个(六划的则为第十九个)。就繁体和简体中文中,舛部归于六划部首。舛部只以下方为部字。且无其他部首可用者将部
  • BEE TRAINBEE TRAIN是一家以动画企划制作为主要业务的日本企业。BEE TRAIN的创办人——真下耕一与崛川宪司,过去皆曾任职于动画制作公司龙之子并结识,随后真下耕一于1984年自龙之子制作