对称群 (n次对称群)

✍ dations ◷ 2025-11-20 00:51:53 #置换群,有限群,抽象代数,对称

数学上,集合上的对称群记作S或Sym()。它的元素是所有到自身的双射。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym()。两个函数的复合一般记作 o ,在置换群的表示里简记作。

对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。

各种置换群中,有限集合上的置换群有着特殊的重要性。

称上的对称群是S。上所有的排列构成了全部一一映射的集合,因此,S有!个元素。对 > 2,S不是阿贝尔群。当且仅当 ≤ 4时,S是可解群。对称群的子群称为置换群。

对称群中,两个置换的乘积就是指双射函数的复合,由符号"∘"(U+2218 ∘ )来表示,也可以省略。例如:

与的复合应先适用,其后适用。那么在中的次序1将先被映射为元素2,然后再由 的次序2变换成元素2,的次序2先映射为5,然后由 的次序5变换成4;3被 变换成5,如此类推。所以 乘以是:

容易证明长度为L =的轮换(或称循环,如下节叙述),它的次方会分解为个长度为的轮换。比如( = 2, = 3):

对换指只交换集合中的两个元素而使其他元素仍变换到自身的置换,例如(1 3)。每个置换都能写成一系列对换的乘积。比如上例中的 = (1 2)(2 5)(3 4)。

由于能被写成奇数个对换的乘积,是一个奇置换。与此相反的,是一个偶置换。

一个置换表达成对换乘积的方式不是唯一的,但每种表达方式中对换的个数的奇偶性不变,可以据此定义奇置换和偶置换。

两个偶置换的乘积是偶置换,两个奇置换的乘积是偶置换,奇置换和偶置换的乘积是奇置换,偶置换和奇置换的乘积是奇置换。于是可以定义置换的正负号(sign):

在这个定义下,

是一个群同态。({+1,-1}关于乘法构成群),这个同态的同态核是所有的偶置换,称作n次交错群,记作A。它是S的正规子群,有! / 2个元素。

置换的正负号也可以定义为:

其中n-O(n)表示置换的轮换指数,O(n)表示置换的轨道(orbit)数。群S是A和由一个单一对换生成的任何子群的半直积。

轮换指一种置换,使得对集合{1,...,}中的某个,, (), 2(), ..., () = 是作用下不映射到自身的所有元素。比如说,以下的置换

就是一个轮换。因为(1) = 4, (3) = 1,(4) = 3。2,5不变。我们将这个轮换记作(1 4 3),它的长度是3。轮换的阶数等于它的长度。如果两个轮换移动的元素皆不相同,则称它们不交。不交的轮换是可交换的,例如(3 1 4)(2 5 6) = (2 5 6)(3 1 4)。每个S中的元素都可以写成若干个互不相交的轮换的乘积。如果不计轮换的排列次序,这种表示是唯一的。

S的共轭类是对于置换轮换表达的结构来说的。两个置换共轭,当且仅当在它们的轮换表达中,轮换的数量以及长度都相等。比如说,在S5中, (1 2 3)(4 5)与(1 4 3)(2 5)共轭,但不与(1 2)(4 5)共轭。

推论:任意有限群都与某个置换群同构。

相关

  • 列奥纳多·达·芬奇列奥纳多·达·芬奇(意大利语:Leonardo da Vinci;儒略历1452年4月15日-1519年5月2日),又译达文西,全名列奥纳多·迪·瑟皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci,意为“芬奇
  • 一年生植物一年生植物是植物生活型的一种,指在一年期间发芽、生长、开花然后死亡的植物。此类植物皆为草本,因此又常称为一年生草本(植物)。一年生植物虽被统称为“一年”生,实际上的生命周
  • 基督复临安息日会基督复临安息日会(英语:Seventh-day Adventist),是基督教的一个教派,源自19世纪中期美国的米勒耳派运动,该组织成立于1863年,以遵守圣经于创世纪中神所设立的每一周的第七天(即星期
  • 格奥尔格·弗里德里希·亨德尔格奥尔格·弗里德里希·亨德尔(德语:Georg Friedrich Händel,1685年2月23日-1759年4月14日),巴洛克音乐作曲家,创作作品类型有歌剧、神剧、颂歌及管风琴协奏曲,著名作品为《弥赛亚
  • 时间复杂度在计算机科学中,算法的时间复杂度(Time complexity)是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这
  • 效价效价强度(英语:potency)在药理学中是药物活性的量度,以达到一定效果所需的剂量来表示。效价强度高的药物(如吗啡、阿普唑仑、利培酮)在低浓度时就有强烈反应,而效价强度低的药物(如
  • 低俗小说《低俗小说》(英语:Pulp Fiction)是一部1994年美国黑色幽默犯罪片,为昆汀·塔伦提诺执导与编剧,故事则由塔伦提诺和罗杰·艾弗瑞(英语:Roger Avary)构想。电影充斥着脏话、幽默和暴
  • 五角十二面体在几何学中,五角十二面体是一种由12个不等边五边形组成的十二面体,具有四面体群对称性。其与正十二面体类似,皆是由12个全等的五边形组成,且每个顶点都是3个五边形的公共顶点,但
  • 调度场算法调度场算法(Shunting Yard Algorithm)是一个用于将中缀表达式转换为后缀表达式的经典算法,由艾兹格·迪杰斯特拉引入,因其操作类似于火车编组场而得名。通过这个例子可以看出两
  • 波罗的海国家理事会波罗的海国家理事会(英语:Council of the Baltic Sea States,缩写:CBSS)是由北欧波罗的海国家政府所组成的合作组织,于苏联解体后成立。理事会特别针对经济发展、能源、教育与文化