霍普夫纤维化

✍ dations ◷ 2025-04-03 10:50:51 #纤维丛

在拓扑学中,霍普夫纤维化(Hopf fibration,亦称霍普夫纤维丛)是最早提出的纤维化,其中的纤维是圆圈(1-球面,S1),基空间是三维空间中的球面(2-球面,S2),而全空间是四维空间中的超球面(3-球面,S3)。容易验证,它是非平凡的。即全空间S3与积空间S1×S2不是拓扑同构的。

运用基本的拓扑学语言,霍普夫纤维化可以解释为一个连续满射(称为投影) π : S 3 S 2 {\displaystyle \pi :S^{3}\rightarrow S^{2}} ,使得

首先注意到,π是一个映射,这就意味着,任意两个纤维是不交集,且所有的纤维的并等于全空间S3,于是所有的纤维是S3的一个划分。通俗地说,霍普夫纤维化描述了用圆圈来填满S3的一种方式,其中每个圆圈对应S2里面的一个点。

上面的条件还不足以使它成为一个纤维化,后者需要更强的条件,

这个条件意味着,全空间S3与积空间S1×S2在局部的拓扑性质上是不可区分的。如果全空间与积空间在整体的拓扑性质上也不可区分(即两者同胚),则这个纤维化就是平凡的纤维化,例子如切丛。全空间与积空间的局部等价性又称为局部平凡条件。霍普夫纤维化的重要性在于它是第一个非平凡纤维丛的例子,并且为纤维丛等数学概念的定义提供了模型基础。

上面描述的霍普夫纤维化可以记作: S 1 S 3   π S 2 . {\displaystyle S^{1}\hookrightarrow S^{3}{\xrightarrow {\ \pi \,}}S^{2}.}

S3中的元素在四元数乘法下形成一个群G。给定一个纤维化之后,S3中对应于包含单位元的那个S1纤维的元素自然地构成了G的一个子群H。现在考虑这个子群H中的元素对G中元素的右乘,它自然地构成了S3的一个自同构,这个自同构保持了纤维不变,即把纤维映射为纤维。

霍普夫纤维化给出了S3上的纤维用S2中的元素来进行参数化的一种方式。现在,我们说霍普夫纤维丛是一个主H-丛,意味着用H中的元素对S3进行变换后,我们仍然可以采用相同的参数化(即相同的映射π),唯一不同的,是每条纤维到S1的同胚映射变为了另一个同胚映射。

上面提到的霍普夫纤维化是最早的霍普夫纤维化,有时也用这个词来指代更广泛的一类纤维丛。注意到前述纤维丛中涉及的三个超球面分别与复数域上的一些结构同胚(参见复射影直线):

一个很自然的拓展是把上面的复数域换成实数或超复数,与实数、复数、四元数、八元数对应的霍普夫丛用上面的记号分别表为:

同伦论的研究表明,霍普夫丛只有上面四个,它们都不是平凡丛。

在计算机图形影片 Dimensions(英语:Dimensions (animation)) 的第7、8章中提供了关于霍普夫纤维化的演示,也就是给出一个具体的π的构造方式。该演示中涉及到更多的概念,如Villarceau circles(英语:Villarceau circles)。

相关

  • 复杂性在日常说法中,复杂或复杂性和简单相对立。但在特定的场合,复杂的反面是各部分相互独立,而复杂化才与简单相对立。本条目中,是从这种特定科学意义上,对复杂或复杂性予以讨论。
  • 导灵指导灵 (Spirit guide),又称 灵界向导 或 守护灵,是新纪元运动的信仰对象之一。在西方的精神主义中,守护灵是指附在人身上或伴随在身边进行守护与引导人思想的一种灵体。
  • 波罗的海国家理事会波罗的海国家理事会(英语:Council of the Baltic Sea States,缩写:CBSS)是由北欧波罗的海国家政府所组成的合作组织,于苏联解体后成立。理事会特别针对经济发展、能源、教育与文化
  • 迈克尔·海尼施迈克尔·海尼施(Michael Hainisch,1858年-1940年)是奥地利第一共和国第二任总统(1920年-1928年)。他是一个自由主义经济学者、政治家和社会活动家,不属于任何政党。
  • 李鸣李鸣(Ming Lee,1977年9月2日-),中国文化大学戏剧系影剧组毕业,主要从事电影与电视之摄影指导工作,曾于2009年以电视电影《记得我们爱过》获得金钟奖最佳摄影。
  • 阿里·马希尔帕夏阿里·马希尔帕夏(阿拉伯语:علي ماهر باشا‎,1882年11月9日-1960年8月25日),瓦夫德党,是埃及的政治家,曾四次担任埃及总理。
  • 国际协会联盟国际协会联盟(英语:Union of International Associations,简称:UIA)是一个非营利性非政府组织的国际研究组织,根据联合国授权,该全球公民社会与发布资讯于国际组织、国际会议、世
  • 毕四毕四,元朝后期集庆路(今江苏省南京市)花山人。元顺帝至正七年(1347年)集庆花山人毕四等三十六人起义反元,前后坚持达三个月。元朝驻守江南的镇南王孛罗不花,是元世祖的曾孙,脱欢的孙
  • 德莱库拉的房子《德莱库拉的房子》是美国的一部恐怖片,由环球影业于1944年发行。《德莱库拉的房子》是《科学怪人之家》的续集,并继续将环球影业三个著名角色狼人、科学怪人和德拉库拉融合。
  • 洪智育洪智育(Hung Chih-yu,1968年3月10日-)。台湾导演。洪智育生于台湾高雄市,在1983年考上高雄中学,毕业后进入世界新闻专科学校广播电视科就读毕业。求学期间师从已故著名影评人王菲