首页 >
气压表
✍ dations ◷ 2024-12-22 20:01:08 #气压表
气压表或称气压计(英语、德语: Barometer)是用来测量气压的仪器,在气象学中被广泛使用。气压表有多种造型和原理。因此它是压力表的一类。气压记是由气压表发展出来的仪器,气压记可以用图表或电子方式记录一个地区的气压的时间性变化。众多测量气压方法配合天气图用于帮助查找地面低压槽、高压系统和额叶界限(frontal boundaries)。标准型水银柱气压计一个简单的水银气压表垂直水银柱的示意图法国巴黎工艺美术博物馆典藏的老晴雨表歌德水压计1890年代的晴雨表欧洲大多数语言中气压表一词被称为Barometer,这个名字是爱尔兰学者罗伯特·波义耳引入的,它来自希腊语的báros(重)和métron(度量衡),意思是测量空气的重量的仪器。约1635年佛罗伦萨的工程师和钻井人被授命建造宫廷花园里巨大的灌溉装置。他们吃惊地发现无论如何他们的抽水机无法将水提升约10米的高度。伽利略被授命来研究这个问题。伽利略在他的《关于两门新学科的谈话及数学证明》(Discorsi e dimostrazioni matematiche)中描写了这个问题,但他逝世于1642年,未能来得及提供这个问题的解决办法。早在伽利略1614年的笔记中就已经看得出,他当时研究过空气的重量,并确定其值为水的重量的660分之一,但他并未从中得出其它结论。当时的教条与今天的见识正好相反,当时无法设想到不是抽水机将水抽向上,而是气压将水挤向上来。当时的人认为抽水机可以抽水是因为大自然“憎恶真空”(拉丁语:horror vacui)。伊万奇里斯特·托里拆利继伽利略成为托斯卡纳伯爵的宫廷物理学家,他继续伽利略的研究,并做试验来证明水是由于空气压力上升的。为了不必使用10米高的水柱,他使用比水的比重高13.6倍的汞(俗称水银)。他将汞灌入一个很长的玻璃管,用手指堵住一端,将玻璃管倒过来插入一个灌满汞的盆。他发现玻璃管里的水银不完全流出,而留下来的水银柱的高度总是一样的,不管他将玻璃管插入水银盆里多深这个高度始终约为76厘米。他由此得出结论说空气向盆的表面施加压力来抵消水银柱的重力。而且这个压力是使得抽水机可以将水抽高约10米,但无法继续抽高的原因。他还发现水银柱的高度变化,而且在坏天气到来之前它会降低。这样一来托里拆利于1643年发明了气压表。由于开口的盆非常不易于运输气压表,因此有人设计了各种不同的气压表,比如有人将水银封入一个连在玻璃管上的通气的、装有少量水银的皮袋里。罗伯特·波义耳爵士将气压表的玻璃管向上弯,制成了今天依然被使用的虹吸管式的气压表。法国物理学家勒奈·笛卡尔改善了托里拆利的装置,他在玻璃管边上添加了一个纸的标记表。笛卡尔也是第一位提出高处的气压比低处的气压低的人。气压使得水银柱达到约76厘米的高度,但它不足以使得水银柱以上的空间也被水银占据。1640年左右在科学界关于空气是否有重量的问题是讨论最多的问题。布莱士·帕斯卡重复了托里拆利的试验,他与笛卡尔一样相信假如空气有重量的话水银柱在高处上升的高度会比较低。在巴黎的一个52米高的塔的顶上他证实了这个猜测,不过当时的试验还相当不精确。在他的一个住在多姆山省的亲家的帮助下他于1648年9月19日重复了这个试验,在不同的高处他确定水银柱随着高度的确不断下降。后来在国际单位制中压力的单位以他命名为帕斯卡,一帕斯卡相当于一牛顿每平方米。1663年奥托·冯·盖利克使用马格德堡半球证明气压的存在。他使用两个半球,将半球内抽空后马无法将半球分开。今天的低压舱就是按这个原理工作的。直到19世纪中仪表工、眼镜匠和钟表匠才开始工业化生产气压表,一开始主要作为科学仪器,后来也作为家用。
1675年在一次夜间运输水银气压表的过程中有人偶然发现气压表受碰撞颠簸时其玻璃管会发出蓝色的光。波义耳的一个学生研究过这个现象但未能提出令人满足的解释。但与此同时人们开始研究真空放电的现象。今天我们知道这个光是水银原子与玻璃摩擦导致的。液体气压表有一个含有液体的垂直的管,管的上端密封,下端浸入一个含有同样液体的容器。液体受其重量影响流入容器,在管的上端造成一个低压区。气压防止液体下流,使得它在管内保持一定的高度。最常见的液体气压表使用水银,因此被称为水银气压表。在标准状况下其水银柱高760毫米。由于水银和玻璃管受温度影响而变化,因此其读出的值要转化计算:
p
=
p
a
⋅
(
1
−
0
,
000182
⋅
T
)
{displaystyle p=p_{a}cdot (1-0,000182cdot T)}使用水银的原因是因为它的比重比较高,因此使用的管子不必非常长。假如使用水的话其管子要达10米长。此外水银蒸发很小,即使在管子上部的真空里水银的蒸发依然非常小。第一架水银气压表是1643年伊万奇里斯特·托里拆利发明的。他也认识到气压的变化。气压的单位托是以他命名的。1托=1毫米汞柱,相当于与133.32帕斯卡。卢生·韦帝(英语:Lucien_Vidi)(1805-1866)提出利用低气压来预测暴风雨天气,是首次气候预测仪器“暴风玻璃”或“歌德气压表”的原理。歌德气压表也是一种液体气压表,它往往被用来作为装饰品。它由一个密封的、外形优美的主容器组成,在主容器的下方有一个小的,向上开口的管子连出来。低压时管里的液体会升高,高压时管里的液体会下降。歌德气压表命名来自 约翰·沃尔夫冈·冯·歌德利用埃万杰利斯塔·托里拆利 理论自制一简单但有效的气压球。许多英语系国家亦称之于法文 le baromètre Liègeois,主因是早期天气预测玻璃装置来自于比利时的列日。盒式气压表由一个由薄金属片组成的盒子组成,其发明人是路辛·维蒂(英语:Lucien_Vidi)。好的盒式气压表由到八层这样的盒子组成来提高其灵敏度。高压时盒子受挤压,低压时盒子向外膨胀,这个体积变化可以由机械部分传递到指针上。盒式气压表的一个毛病是其受温度的影响。为了防止盒内的空气受高温影响膨胀盒内被抽真空,但盒子本身也受温度影响热胀冷缩,因此盒子要由特别的合金组成,不同的组成部分受温度影响时互相之间抵消其变形来降低温度的影响。虽然如此盒式气压表受温度影响造成测量误差。风镜气压表是罗伯特·菲茨罗伊发明的。它含有樟脑在乙醇中的溶液。随气压和气温的不同它可以结晶。高压下晶体溶解,低压下结晶,溶液浑浊。气压表最主要是用在气象学,是每个气象站必备的仪器。由于气压随高度降低,也可以用作飞机的高度计。测量人为的高压或低压的仪器不称为气压表,而称为压力表。使用气压变化来测量高度变化的仪器称为升降速率表。在中纬度地区气压表往往简化用来作为“天气表”,高压被视为是好天气的预兆,低压被视为坏天气的预兆。但这个用法是相当不精确的,有时坏天气到来前也会气压升高,因此这个用法是非常粗略的。
相关
- 环孢菌素环孢素(英语:Cyclosporine、Cyclosporine A、Ciclosporin)也称为“环孢菌素”或“环孢霉素”,是一种被广泛用于预防器官移植排斥的免疫抑制剂。它借由抑制T细胞的活性跟生长而达
- 结节性多动脉炎结节性多动脉炎(Polyarteritis nodosa, PAN)是一种全身性的坏死血管炎,典型的侵犯对象为中型的小动脉,偶尔会影响到小型的动脉。病人的症状大多以全身的系统性症状表现。可能影
- 泰奥弗拉斯托斯泰奥弗拉斯托斯(希腊语:Θεόφραστος,转写:Theόphrastos,也称提奥弗拉斯特,约前371年-约前287年),公元前4世纪的古希腊哲学家和科学家,先后受敎于柏拉图和亚里士多德,后来接替
- 遗传学入门遗传学是一门研究基因的学科,其目的是尝试解释什么是基因以及它们是如何发挥作用的。基因的作用,可以认为是现存生物从其远祖所继承下来的特质。而基因学所探索的其中一个方向
- 二苯基甲酮二苯酮(也称二苯基甲酮)是一种具有分子式(C6H5)2CO的有机化合物,可简写为Ph2CO。二苯基甲酮作为二芳基酮的母核,是有机化学重要的合成中间体。二苯甲酮可作为光敏引发剂而应用于
- 苯六酚苯六酚,又称六羟基苯,是一种有机化合物,化学式为C6H6O6或C6(OH)6。它是苯的六羟基取代物。苯六酚是一种可溶于热水的晶体,熔点大于310°C。它可以用肌醇(环己六醇)来制备。苯六酚
- 燧石燧石俗称火石,是一种比较常见的硅质岩石,主要由隐晶质石英(SiO2)组成,致密、坚硬,多为灰、黑色,敲碎后具有贝壳状断口,根据其存在状态,分为两种类型:燧石由于坚硬,破碎后产生锋利的断口
- CY有机钇化学是对拥有碳-钇键化合物的研究,并主要在学术研究当中见到这些钇化合物,不被广泛应用。这些钇化合物以三氯化钇为原料。三氯化钇则可以由三氧化二钇和浓盐酸及氯化铵
- Smsub2/subOsub3/sub三氧化二钐(化学式:Sm2O3 ),又称氧化钐(Ⅲ),是钐的氧化物。三氧化二钐可借由直接加热钐至150℃时制得:4 Sm + 3 O2 → 2 Sm2O3三氧化二钐也可借由加热碳酸钐、硝酸钐、草酸钐后制得
- 荷西战役鸡笼之战(又称为第二次圣萨尔瓦多城战役、圣救主城之战、圣救主城荷西浴血战),是1642年荷兰东印度公司为从西班牙帝国手中夺取北台湾统治权,所发动之战争。由于双方战力相差过大