角动量

✍ dations ◷ 2024-07-05 10:49:46 #角动量
在物理学中,角动量是与物体的位置矢量和动量相关的物理量。对于某惯性参考系的原点 O {displaystyle mathbf {O} } ,物体的角动量是物体的位置矢量和动量的叉积,通常写做 L {displaystyle mathbf {L} } 。角动量是矢量。其中, r {displaystyle mathbf {r} } 表示物体的位置矢量, L {displaystyle mathbf {L} } 表示角动量。 p {displaystyle mathbf {p} } 表示动量。角动量 L {displaystyle mathbf {L} } 又可写为:其中, I {displaystyle I} 表示质点的转动惯量, ω {displaystyle {boldsymbol {omega }}} 是角速度矢量。假设作用于物体的外力矩和为零,则物体的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。当物体的运动状态(动量)发生变化,则表示物体受力作用,而作用力大小就等于动量 P {displaystyle mathbf {P} } 的时变率: F = d P d t {displaystyle mathbf {F} ={frac {dmathbf {P} }{dt}}}当物体的转动状态发生改变时,表示物体受到力矩作用,而力矩就等于角动量的时变率: τ = d L d t {displaystyle {boldsymbol {tau }}={frac {dmathbf {L} }{dt}}}若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒。例如静电力或万有引力均是径向力,因此不会产生力矩。行星运动的相互作用力源自于万有引力,故行星运动满足角动量守恒,所对应的就是开普勒定律中的第二定律。需要特别说明的是,动量 P ≡ m v {displaystyle mathbf {P} equiv mmathbf {v} } ,也就是说,动量的方向和速度的方向一致。伽利略·伽利莱首先引入角动量守恒的概念。:80在量子力学里角动量是量子化的:系统的角动量不能任意地取某实数值而只能取以约化普朗克常数 ℏ {displaystyle hbar } 为单位整数或半整数倍。粒子的运动轨道造成的角动量必须取 ℏ {displaystyle hbar } 的整数倍。另外实验证明大部分亚原子粒子都拥有一种和运动无关的先天角动量叫自旋。自旋以 ℏ 2 {displaystyle {frac {hbar }{2}}} 的倍数出现。角动量是位移与动量的矢量积。而量子力学里位移与同方向动量是非对易的因此各独立方向的角动量分别非对易:根据海森堡不确定原理非对易的物理量不能同时测准。因此角动量矢量的各方向部可以各自但不能同时确定。虽然如此但是角动量矢量的长度是可和任意一部同时确定:因此算符 L 2 {displaystyle L^{2}} 和 L z {displaystyle L_{z}} (任选一方向为z)有共同的特征波函数。 L 2 {displaystyle L^{2}} 在球坐标系表现为::169其中 θ {displaystyle theta } 是位移与 z {displaystyle z} 轴夹角, ϕ {displaystyle phi } 是绕 z {displaystyle z} 轴旋转的角度。 它和 L z {displaystyle L_{z}} 的共同特征函数是球谐函数:l {displaystyle l} 是某非负整数。 − l ≤ m ≤ l {displaystyle -lleq mleq l} 是绝对值不大于 l {displaystyle l} 的整数。经典力学内角动量是可以取任意连续值会导致热力学上一些吊诡。角动量量子化给这些问题完美的答案,这也是角动量量子化有其必要性的证据之一。 在热力学里平均能量和系统自由度有关。例如忽略内部结构的单原子分子组成的理想气体平均能量是 E N = 3 2 k B T {displaystyle {frac {E}{N}}={frac {3}{2}}k_{mathrm {B} }T} :三维空间运动的分子的每个独立运动方向分别给于平均能量 k B T 2 {displaystyle {frac {k_{mathrm {B} }T}{2}}} 。这是能量均分定理。假设除了三维的平移运动,气体的分子是由两种原子组成。而原子可以相互环绕运动。为了简化问题假设所有分子的原子对只能环绕z轴运动。它们旋转的动能量是:L z {displaystyle L_{z}} 是分子旋转的角动量, I {displaystyle I} 是转动惯量和原子的距离平方成正比。从运用统计力学的配分函数( β = 1 k B T {displaystyle beta ={frac {1}{k_{mathrm {B} }T}}} 是温度 T {displaystyle T} 的倒数)可以得到经典旋转运动对平均能量的贡献:也就是新的旋转自由度和每平移运动方向给与一样的能量。但是,旋转的贡献并不决定于分子的转动惯量 I {displaystyle I} 也就是和原子的距离无关。但这和我们期待原子距离或分子转动惯量趋向0时回到无旋转的结果相矛盾。这就是经典力学引起的吊诡:能量均分定理允许透过宏观观察得到所有微观自由度的信息:尽管由很多基本粒子组成的原子一般拥有远高于宏观观察的自由度。 问题的解决来自角动量量子化。因为微观角动量不能取任意的连续值因此以上用积分计算配分函数是不正确的。配分函数应该是一个和:在温度很高( β → 0 {displaystyle beta to 0} )或分子转动惯量很大的情况下,每项间变化缓慢。用积分来进似近似以上和是可接受的。在这情况下选转的确和一般自由度一样。上段得到的结果是正确的。但在温度很低或分子转动惯量很小的情况下 Z {displaystyle Z} 主要贡献来自 | n | {displaystyle |n|} 小的前几项:因此对平均温度的贡献是:而一个系统的量子旋转特征和经典旋转特征的交叉点出现在温度可以给与几个 ℏ {displaystyle hbar } 角动量的能量:

相关

  • 美国国家生物技术信息中心国家生物技术信息中心(National Center for Biotechnology Information,简称NCBI)是美国国家医学图书馆(NLM)的一部分(该图书馆是美国国家卫生研究所的一部分)。NCBI位于美国马里兰
  • 拉多姆拉多姆(波兰语:Radom)是位于波兰中部的一个城市,2013年有219,703名居民。它位于马佐夫舍省(由1999年开始)内的Mleczna河畔,前身是拉多姆省(1975年-1998年)的首府。所在地正是波兰首都
  • 菲茨杰拉德弗朗西斯·斯科特·基·菲茨杰拉德(英语:Francis Scott Key Fitzgerald,1896年9月24日-1940年12月21日),大陆译作弗朗西斯·斯科特·菲茨杰拉德,繁体译作費茨傑羅,简称斯科特·菲茨
  • 封建封建是源自于中国古代天子依爵位高低将领土分封与宗室或功臣作为食邑的制度。在下,大地主或领主能强行索取土地收入,并且能在其领地上行使政府职权。而在现代的汉语使用上,“封
  • 早期尼德兰画派早期尼德兰绘画也称佛兰芒原始绘画(荷兰语:Vlaamse Primitieven)是15及16世纪北方文艺复兴时勃艮第及哈布斯堡统治时的尼德兰地区的绘画作品,布鲁日、根特、图尔奈及布鲁塞尔是
  • 磁电阻式随机存取内存随机存取存储器(英语:Random Access Memory,缩写:RAM;也叫主存)是与CPU直接交换数据的内部存储器。它可以随时读写(刷新时除外,见下文),而且速度很快,通常作为操作系统或其他正在运行中
  • 苏萨苏萨(波斯语:شوش‎,转写:Shush,中国大陆译作苏撒,天主教思高圣经译作稣撒)是位于伊朗的胡齐斯坦省的城市。2005年的人口数约为64960人。公元1901年,著名的汉谟拉比法典(现存于法国
  • 廷布廷布(宗喀语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolangm
  • 胡戈·容克斯胡戈·容克斯(德语:Hugo Junkers,1859年2月3日-1935年2月3日)为普鲁士莱因省出生的男性工程师、发明家,以及容克斯飞机与发动机制造厂的创办者。个人生平中曾申请了多达约380项的
  • 阴茎折断阴茎折断指的是覆盖阴茎海绵体的白膜其中之一或两者全部破裂的情况。病因是阴茎勃起后遭到剧烈的打击,有时也会伴随着尿道阻断或阴茎背部神经、静动脉血管受损。阴道性交、肛