首页 >
角动量
✍ dations ◷ 2025-11-24 22:59:29 #角动量
在物理学中,角动量是与物体的位置矢量和动量相关的物理量。对于某惯性参考系的原点
O
{displaystyle mathbf {O} }
,物体的角动量是物体的位置矢量和动量的叉积,通常写做
L
{displaystyle mathbf {L} }
。角动量是矢量。其中,
r
{displaystyle mathbf {r} }
表示物体的位置矢量,
L
{displaystyle mathbf {L} }
表示角动量。
p
{displaystyle mathbf {p} }
表示动量。角动量
L
{displaystyle mathbf {L} }
又可写为:其中,
I
{displaystyle I}
表示质点的转动惯量,
ω
{displaystyle {boldsymbol {omega }}}
是角速度矢量。假设作用于物体的外力矩和为零,则物体的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。当物体的运动状态(动量)发生变化,则表示物体受力作用,而作用力大小就等于动量
P
{displaystyle mathbf {P} }
的时变率:
F
=
d
P
d
t
{displaystyle mathbf {F} ={frac {dmathbf {P} }{dt}}}当物体的转动状态发生改变时,表示物体受到力矩作用,而力矩就等于角动量的时变率:
τ
=
d
L
d
t
{displaystyle {boldsymbol {tau }}={frac {dmathbf {L} }{dt}}}若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒。例如静电力或万有引力均是径向力,因此不会产生力矩。行星运动的相互作用力源自于万有引力,故行星运动满足角动量守恒,所对应的就是开普勒定律中的第二定律。需要特别说明的是,动量
P
≡
m
v
{displaystyle mathbf {P} equiv mmathbf {v} }
,也就是说,动量的方向和速度的方向一致。伽利略·伽利莱首先引入角动量守恒的概念。:80在量子力学里角动量是量子化的:系统的角动量不能任意地取某实数值而只能取以约化普朗克常数
ℏ
{displaystyle hbar }
为单位整数或半整数倍。粒子的运动轨道造成的角动量必须取
ℏ
{displaystyle hbar }
的整数倍。另外实验证明大部分亚原子粒子都拥有一种和运动无关的先天角动量叫自旋。自旋以
ℏ
2
{displaystyle {frac {hbar }{2}}}
的倍数出现。角动量是位移与动量的矢量积。而量子力学里位移与同方向动量是非对易的因此各独立方向的角动量分别非对易:根据海森堡不确定原理非对易的物理量不能同时测准。因此角动量矢量的各方向部可以各自但不能同时确定。虽然如此但是角动量矢量的长度是可和任意一部同时确定:因此算符
L
2
{displaystyle L^{2}}
和
L
z
{displaystyle L_{z}}
(任选一方向为z)有共同的特征波函数。
L
2
{displaystyle L^{2}}
在球坐标系表现为::169其中
θ
{displaystyle theta }
是位移与
z
{displaystyle z}
轴夹角,
ϕ
{displaystyle phi }
是绕
z
{displaystyle z}
轴旋转的角度。
它和
L
z
{displaystyle L_{z}}
的共同特征函数是球谐函数:l
{displaystyle l}
是某非负整数。
−
l
≤
m
≤
l
{displaystyle -lleq mleq l}
是绝对值不大于
l
{displaystyle l}
的整数。经典力学内角动量是可以取任意连续值会导致热力学上一些吊诡。角动量量子化给这些问题完美的答案,这也是角动量量子化有其必要性的证据之一。
在热力学里平均能量和系统自由度有关。例如忽略内部结构的单原子分子组成的理想气体平均能量是
E
N
=
3
2
k
B
T
{displaystyle {frac {E}{N}}={frac {3}{2}}k_{mathrm {B} }T}
:三维空间运动的分子的每个独立运动方向分别给于平均能量
k
B
T
2
{displaystyle {frac {k_{mathrm {B} }T}{2}}}
。这是能量均分定理。假设除了三维的平移运动,气体的分子是由两种原子组成。而原子可以相互环绕运动。为了简化问题假设所有分子的原子对只能环绕z轴运动。它们旋转的动能量是:L
z
{displaystyle L_{z}}
是分子旋转的角动量,
I
{displaystyle I}
是转动惯量和原子的距离平方成正比。从运用统计力学的配分函数(
β
=
1
k
B
T
{displaystyle beta ={frac {1}{k_{mathrm {B} }T}}}
是温度
T
{displaystyle T}
的倒数)可以得到经典旋转运动对平均能量的贡献:也就是新的旋转自由度和每平移运动方向给与一样的能量。但是,旋转的贡献并不决定于分子的转动惯量
I
{displaystyle I}
也就是和原子的距离无关。但这和我们期待原子距离或分子转动惯量趋向0时回到无旋转的结果相矛盾。这就是经典力学引起的吊诡:能量均分定理允许透过宏观观察得到所有微观自由度的信息:尽管由很多基本粒子组成的原子一般拥有远高于宏观观察的自由度。
问题的解决来自角动量量子化。因为微观角动量不能取任意的连续值因此以上用积分计算配分函数是不正确的。配分函数应该是一个和:在温度很高(
β
→
0
{displaystyle beta to 0}
)或分子转动惯量很大的情况下,每项间变化缓慢。用积分来进似近似以上和是可接受的。在这情况下选转的确和一般自由度一样。上段得到的结果是正确的。但在温度很低或分子转动惯量很小的情况下
Z
{displaystyle Z}
主要贡献来自
|
n
|
{displaystyle |n|}
小的前几项:因此对平均温度的贡献是:而一个系统的量子旋转特征和经典旋转特征的交叉点出现在温度可以给与几个
ℏ
{displaystyle hbar }
角动量的能量:
相关
- 吉法酯吉法酯(英语:Gefarnate,或译为合欢香叶酯)是一种用于治疗胃及十二指肠溃疡的药物,也可用于治疗干眼症。
- 骆驼骆驼属(学名:Camelus)通称骆驼,是一种偶蹄目骆驼科的动物,主要有单峰骆驼和双峰骆驼两种,多见于沙漠地带。因其在沙漠以及酷暑、严寒等恶劣自然环境下仍能良好生存的生理特点,沙漠
- 鲨鱼湾鲨鱼湾是一个世界遗产,位于西澳大利亚州的加斯科内,距珀斯北部约800公里。鲨鱼湾也是澳大利亚的最西点。鲨鱼湾是由1699年7月来到澳大利亚的第一批欧洲人中的威廉·丹皮尔命名
- 贾比尔阿布·穆萨·贾比尔·伊本·哈扬(阿拉伯语:جابر بن حيان,721年-815年),波斯炼金术士、药剂师、哲学家、天文学家、占星家、物理学家、地理学家、医生和工程师,被称为“
- 地理分布世界生物地理分区是指在历史发展过程中形成而在现代生态条件下存在的许多生物类型的总体,是在历史因素和生态因素共同作用下形成的。动植物的种或其他分类类群,最初是从一个地
- 切尔西切尔西足球俱乐部(英语:Chelsea Football Club),是一间位于英格兰首都伦敦的足球俱乐部,目前比赛于英格兰超级联赛。球队主场为斯坦福桥球场。切尔西足球俱乐部成立至今超过一百
- 170110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310
- 国际和平局国际和平局成立于1891年,是世界上最早成立的国际和平组织,1910年获得诺贝尔和平奖。
- 药用胰岛素胰岛素(英语:Insulin)是用胰岛素或胰岛素类似物制成的蛋白质类药物。药用胰岛素有很多种,包括速效型(如门冬胰岛素)和长效性(如地特胰岛素)等。胰岛素可以治疗多种疾病,包括糖尿病和
- 墨西哥无毛犬墨西哥无毛犬(Xoloitzcuintle)是一种稀有的无毛犬种。墨西哥无毛犬是美洲最古老的犬种之一。在前250年至450年的科利马文明发现有它们形象的陶器。另外,在墨西哥西部的古代坟墓
