除法

✍ dations ◷ 2025-07-26 20:08:43 #二元运算,除法

数学中,尤其是在基本计算里,除法可以看成是“乘法的反运算”,也可以理解为“重复的减法”。除法运算的本质就是“把参与运算的除数变为 1 {\displaystyle 1} ,得出被除数的值”。

例如: 6 ÷ 3 = 2 {\displaystyle {{6}\div {3}}=2} ,就好像 6 3 3 = 0 {\displaystyle {{{6}-{3}}-{3}}=0} { 6 3 = 3 3 3 = 0 {\displaystyle {\begin{cases}6-3=3\\3-3=0\end{cases}}} 6 {\displaystyle 6} 3 {\displaystyle 3} 减了两次后,就变成了 0 {\displaystyle 0}

如果

而且 b {\displaystyle b} 不等于零,那么

其中,a称为商数,b称为除数,c称为被除数。

如果除式的商数( a {\displaystyle a} )必须是整数,则称为带余除法, a × b {\displaystyle a\times b} c {\displaystyle c} 相差的数值,称为余数( d {\displaystyle d} )。

这也意味着

在高等数学(包括在科学与工程学中)和计算机编程语言中, c ÷ b {\displaystyle c\div b} 写成 c / b {\displaystyle c/b} 。如果我们不需要知道确切值或者留待以后引用,这种形式也常常是称之为分数的最终形式。其中寻找商数的函数为 div {\displaystyle \operatorname {div} } ,寻找余数的函数则为 mod {\displaystyle \operatorname {mod} }

在大部分的非英语语言中, c : b {\displaystyle c:b} 代表 c ÷ b {\displaystyle c\div b} 的比,读做c比b; c / b {\displaystyle c/b} 则代表 c ÷ b {\displaystyle c\div b} 的比值。用法请参照比例。

整除是数学中两个自然数之间的一种关系。自然数 a {\displaystyle a} 可以被自然数 b {\displaystyle b} 整除,是指 b {\displaystyle b} a {\displaystyle a} 的约数,且a是b的整数倍数,也就是 a {\displaystyle a} 除以 b {\displaystyle b} 没有余数。

约数判别法可参照整除规则。

b a {\displaystyle b\mid a} 表示 b {\displaystyle b} 整除 a {\displaystyle a} ,即 a {\displaystyle a} b {\displaystyle b} 的倍数, b {\displaystyle b} a {\displaystyle a} 的因数。

15 {\displaystyle 15} 可以被 5 {\displaystyle 5} 整除,记作 5 15 {\displaystyle 5\mid 15}

20 {\displaystyle 20} 不能被 6 {\displaystyle 6} 整除(因为余数为 2 {\displaystyle 2} ),记作 6 20 {\displaystyle 6\nmid 20} 。在 {\displaystyle \mid } 上加一条斜线即表示不整除。

根据乘法表,两个整数可以用长除法(直式除法)笔算。如果被除数有分数部分(或者说时小数点),计算时将小数点带下来就可以;如果除数有小数点,将除数与被除数的小数点同时移位,直到除数没有小数点。

算盘也可以做除法运算。

长除法俗称“长除”,适用于正式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。

使用长除法计算 1260257 ÷ 37 = 34061 {\displaystyle {{1260257}\div {37}}=34061} 的过程可以表示为:

短除法是长除法的简化版本。在短除法里,被除数放中央,旁以一L型符号表示除法,被除数左侧为除数,下侧为商,省去了长除法逐层计算的过程。

和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式 A {\displaystyle A} 和非零多项式 B {\displaystyle B} ,则存在唯一的多项式 Q {\displaystyle Q} R {\displaystyle R} ,满足:

而多项式 R {\displaystyle R} 若非零多项式,则其幂次严格小于 B {\displaystyle B} 的幂次。

作为特例,如果要计算某个多项式 P {\displaystyle P} 除以一次多项式 X a {\displaystyle X-a} 得到的余多项式,可以直接将 a {\displaystyle a} 代入到多项式 P {\displaystyle P} 中。 P {\displaystyle P} 除以 X a {\displaystyle X-a} 的余多项式是 P ( a ) {\displaystyle P(a)}

具体的计算可以使用类似直式除法的方式。例如,计算 X 3 12 X 2 42 {\displaystyle X^{3}-12X^{2}-42} 除以 X 3 {\displaystyle X-3} ,列式如下:

因此,商式是   X 2 9 X 27 {\displaystyle \ X^{2}-9X-27} ,余式是   123 {\displaystyle \ -123}

通常不定义除以零这种形式。亦即当除以0 或分数的分母为0 时,该式或该数无意义。

相关

  • 替米沙坦(必康平,Micardis)替米沙坦(国际非专利药品名称:Telmisartan) 是一种血管紧张素II受体拮抗剂(英语:ARB),用于治疗高血压。现时大部分降血压药的疗效最长只能维持10小时。 替米沙坦 (Telmisartan) 的
  • 理查·费曼理查德·菲利普斯·费曼, ForMemRS,英文名 Richard Philips Feynman ,(1918年5月11日-1988年2月15日),美国理论物理学家,以对量子力学的路径积分表述、量子电动力学、过冷液氦的超
  • 太空歌剧太空歌剧(英语:Space opera,或称“宇宙史诗”)是科幻的一个分支,意思是强调故事的戏剧性,不像硬科幻强调科学的考证,也不同软科幻强调启发性,有时太空歌剧是太空戏剧(space drama)和太
  • 血管平滑肌血管平滑肌(英语:vascular smooth muscle)是指存在于血管壁且组成其主要部分的特定类型平滑肌。血管平滑肌的收缩或松弛的同时会改变血管的体积以及局部的血压,此一机制负责将体
  • 1775年兹姆里·利姆授职仪式壁画,从前1775年到前1760年创作。现在巴黎卢浮宫博物馆。
  • 明实录《明实录》是明代历朝官修的编年体史书,是研究明代历史的基本史籍。记录明太祖朱元璋到明熹宗朱由校共十三朝的史事。其中建文朝实录附于《太祖实录》中,景泰朝实录附于《英宗
  • 周宁话周宁话,旧称周墩话,是汉藏语系汉语族闽语支闽东语的一种方言,通行于福建省宁德市的周宁县。在语言学中,周宁话属闽东语福宁片(北片),以狮城镇的口音为标准口音。周宁话虽属闽东语的
  • 鼠鸟目small/small鼠鸟科(学名:Coliidae)是鸟纲鼠鸟目(Coliiformes)仅有的一个科,共2属6种。这个目的鸟形态像啮齿类,被笼统地称为鼠鸟,仅分布撒哈拉沙漠以南的非洲大陆。鼠鸟目的鸟曾在广阔的范围分
  • 十四点计划十四点和平原则(英语:Fourteen Points)是为和平协商结束一战,以和平为原则的声明。它的大纲由美国总统伍德罗·威尔逊于1918年1月在美国国会上关于战争目的和和平条款的演说中提
  • 各国国防预算列表这是一个各国国防预算列表,数据来自斯德哥尔摩国际和平研究所,数值都是使用美元标注。不过对先进军事科技的投资也对民生科技发展有利,借由提高本国科技可以达到把饼坐大的好处