除法

✍ dations ◷ 2025-04-26 13:29:39 #二元运算,除法

数学中,尤其是在基本计算里,除法可以看成是“乘法的反运算”,也可以理解为“重复的减法”。除法运算的本质就是“把参与运算的除数变为 1 {\displaystyle 1} ,得出被除数的值”。

例如: 6 ÷ 3 = 2 {\displaystyle {{6}\div {3}}=2} ,就好像 6 3 3 = 0 {\displaystyle {{{6}-{3}}-{3}}=0} { 6 3 = 3 3 3 = 0 {\displaystyle {\begin{cases}6-3=3\\3-3=0\end{cases}}} 6 {\displaystyle 6} 3 {\displaystyle 3} 减了两次后,就变成了 0 {\displaystyle 0}

如果

而且 b {\displaystyle b} 不等于零,那么

其中,a称为商数,b称为除数,c称为被除数。

如果除式的商数( a {\displaystyle a} )必须是整数,则称为带余除法, a × b {\displaystyle a\times b} c {\displaystyle c} 相差的数值,称为余数( d {\displaystyle d} )。

这也意味着

在高等数学(包括在科学与工程学中)和计算机编程语言中, c ÷ b {\displaystyle c\div b} 写成 c / b {\displaystyle c/b} 。如果我们不需要知道确切值或者留待以后引用,这种形式也常常是称之为分数的最终形式。其中寻找商数的函数为 div {\displaystyle \operatorname {div} } ,寻找余数的函数则为 mod {\displaystyle \operatorname {mod} }

在大部分的非英语语言中, c : b {\displaystyle c:b} 代表 c ÷ b {\displaystyle c\div b} 的比,读做c比b; c / b {\displaystyle c/b} 则代表 c ÷ b {\displaystyle c\div b} 的比值。用法请参照比例。

整除是数学中两个自然数之间的一种关系。自然数 a {\displaystyle a} 可以被自然数 b {\displaystyle b} 整除,是指 b {\displaystyle b} a {\displaystyle a} 的约数,且a是b的整数倍数,也就是 a {\displaystyle a} 除以 b {\displaystyle b} 没有余数。

约数判别法可参照整除规则。

b a {\displaystyle b\mid a} 表示 b {\displaystyle b} 整除 a {\displaystyle a} ,即 a {\displaystyle a} b {\displaystyle b} 的倍数, b {\displaystyle b} a {\displaystyle a} 的因数。

15 {\displaystyle 15} 可以被 5 {\displaystyle 5} 整除,记作 5 15 {\displaystyle 5\mid 15}

20 {\displaystyle 20} 不能被 6 {\displaystyle 6} 整除(因为余数为 2 {\displaystyle 2} ),记作 6 20 {\displaystyle 6\nmid 20} 。在 {\displaystyle \mid } 上加一条斜线即表示不整除。

根据乘法表,两个整数可以用长除法(直式除法)笔算。如果被除数有分数部分(或者说时小数点),计算时将小数点带下来就可以;如果除数有小数点,将除数与被除数的小数点同时移位,直到除数没有小数点。

算盘也可以做除法运算。

长除法俗称“长除”,适用于正式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。

使用长除法计算 1260257 ÷ 37 = 34061 {\displaystyle {{1260257}\div {37}}=34061} 的过程可以表示为:

短除法是长除法的简化版本。在短除法里,被除数放中央,旁以一L型符号表示除法,被除数左侧为除数,下侧为商,省去了长除法逐层计算的过程。

和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式 A {\displaystyle A} 和非零多项式 B {\displaystyle B} ,则存在唯一的多项式 Q {\displaystyle Q} R {\displaystyle R} ,满足:

而多项式 R {\displaystyle R} 若非零多项式,则其幂次严格小于 B {\displaystyle B} 的幂次。

作为特例,如果要计算某个多项式 P {\displaystyle P} 除以一次多项式 X a {\displaystyle X-a} 得到的余多项式,可以直接将 a {\displaystyle a} 代入到多项式 P {\displaystyle P} 中。 P {\displaystyle P} 除以 X a {\displaystyle X-a} 的余多项式是 P ( a ) {\displaystyle P(a)}

具体的计算可以使用类似直式除法的方式。例如,计算 X 3 12 X 2 42 {\displaystyle X^{3}-12X^{2}-42} 除以 X 3 {\displaystyle X-3} ,列式如下:

因此,商式是   X 2 9 X 27 {\displaystyle \ X^{2}-9X-27} ,余式是   123 {\displaystyle \ -123}

通常不定义除以零这种形式。亦即当除以0 或分数的分母为0 时,该式或该数无意义。

相关

  • 台大医院国立台湾大学医学院附设医院,简称台大医院(英语:National Taiwan University Hospital),是台湾一所公立医院,乃台湾第一所提供西式医疗服务的政府医疗机构,总院区位于台北市中山南
  • BMD印度弹道导弹防御系统计划(英语:Indian Ballistic Missile Defence Programme,BMD)是由国防研究及发展组织(DRDO)主导的印度反弹道导弹项目。至今,该项目已衍生三种反导系统,包括大
  • 字可以指:
  • 黏蛋白黏蛋白(英语:mucoprotein)是一类主要由黏多糖组成的糖蛋白,常见于膝盖滑膜液(英语:synovial fluid)。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h
  • 宣布成立联省共和国乌得勒支同盟(荷兰语:Unie van Utrecht)是在西班牙哈布斯堡王朝统治下的荷兰北方诸行省于1579年1月23日在乌得勒支的牧师会大礼堂缔结的同盟条约。乌得勒支同盟被看作是荷兰共
  • 780110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 桂枝甘草汤桂枝甘草汤,出自《伤寒杂病论》。发汗过多,其人叉手自冒心、心下悸欲得按者。发汗过多,虚其心阳,水汽凌心则心悸欲按。以桂枝补心阳、炙甘草补中。
  • 金重业金重业(1922年-1988年),韩国著名建筑师。金重业曾留学法国。他与另一位留学日本的韩国建筑设计师金寿根是韩国现代建筑史上最具影响力的两位人物。金重业原在首尔大学建筑学系
  • 罗斯巴德战役罗斯巴德战役(Battle of the Rosebud),是北美印第安战争的一场战役。1874年,美国研究小组在布拉克山上发现了金矿,但是布拉克山是苏族人的圣地,而且开采也会违反美国跟苏族签订的F
  • 保罗·罗默保罗·迈克尔·罗默(英语:Paul Michael Romer,1955年11月7日-),美国经济学家,斯坦福大学教授。他曾被认为是经济增长方面的专家并且是诺贝尔经济学奖的有力候选人,之后亦成功在2018