除法

✍ dations ◷ 2025-09-18 09:04:02 #二元运算,除法

数学中,尤其是在基本计算里,除法可以看成是“乘法的反运算”,也可以理解为“重复的减法”。除法运算的本质就是“把参与运算的除数变为 1 {\displaystyle 1} ,得出被除数的值”。

例如: 6 ÷ 3 = 2 {\displaystyle {{6}\div {3}}=2} ,就好像 6 3 3 = 0 {\displaystyle {{{6}-{3}}-{3}}=0} { 6 3 = 3 3 3 = 0 {\displaystyle {\begin{cases}6-3=3\\3-3=0\end{cases}}} 6 {\displaystyle 6} 3 {\displaystyle 3} 减了两次后,就变成了 0 {\displaystyle 0}

如果

而且 b {\displaystyle b} 不等于零,那么

其中,a称为商数,b称为除数,c称为被除数。

如果除式的商数( a {\displaystyle a} )必须是整数,则称为带余除法, a × b {\displaystyle a\times b} c {\displaystyle c} 相差的数值,称为余数( d {\displaystyle d} )。

这也意味着

在高等数学(包括在科学与工程学中)和计算机编程语言中, c ÷ b {\displaystyle c\div b} 写成 c / b {\displaystyle c/b} 。如果我们不需要知道确切值或者留待以后引用,这种形式也常常是称之为分数的最终形式。其中寻找商数的函数为 div {\displaystyle \operatorname {div} } ,寻找余数的函数则为 mod {\displaystyle \operatorname {mod} }

在大部分的非英语语言中, c : b {\displaystyle c:b} 代表 c ÷ b {\displaystyle c\div b} 的比,读做c比b; c / b {\displaystyle c/b} 则代表 c ÷ b {\displaystyle c\div b} 的比值。用法请参照比例。

整除是数学中两个自然数之间的一种关系。自然数 a {\displaystyle a} 可以被自然数 b {\displaystyle b} 整除,是指 b {\displaystyle b} a {\displaystyle a} 的约数,且a是b的整数倍数,也就是 a {\displaystyle a} 除以 b {\displaystyle b} 没有余数。

约数判别法可参照整除规则。

b a {\displaystyle b\mid a} 表示 b {\displaystyle b} 整除 a {\displaystyle a} ,即 a {\displaystyle a} b {\displaystyle b} 的倍数, b {\displaystyle b} a {\displaystyle a} 的因数。

15 {\displaystyle 15} 可以被 5 {\displaystyle 5} 整除,记作 5 15 {\displaystyle 5\mid 15}

20 {\displaystyle 20} 不能被 6 {\displaystyle 6} 整除(因为余数为 2 {\displaystyle 2} ),记作 6 20 {\displaystyle 6\nmid 20} 。在 {\displaystyle \mid } 上加一条斜线即表示不整除。

根据乘法表,两个整数可以用长除法(直式除法)笔算。如果被除数有分数部分(或者说时小数点),计算时将小数点带下来就可以;如果除数有小数点,将除数与被除数的小数点同时移位,直到除数没有小数点。

算盘也可以做除法运算。

长除法俗称“长除”,适用于正式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。

使用长除法计算 1260257 ÷ 37 = 34061 {\displaystyle {{1260257}\div {37}}=34061} 的过程可以表示为:

短除法是长除法的简化版本。在短除法里,被除数放中央,旁以一L型符号表示除法,被除数左侧为除数,下侧为商,省去了长除法逐层计算的过程。

和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式 A {\displaystyle A} 和非零多项式 B {\displaystyle B} ,则存在唯一的多项式 Q {\displaystyle Q} R {\displaystyle R} ,满足:

而多项式 R {\displaystyle R} 若非零多项式,则其幂次严格小于 B {\displaystyle B} 的幂次。

作为特例,如果要计算某个多项式 P {\displaystyle P} 除以一次多项式 X a {\displaystyle X-a} 得到的余多项式,可以直接将 a {\displaystyle a} 代入到多项式 P {\displaystyle P} 中。 P {\displaystyle P} 除以 X a {\displaystyle X-a} 的余多项式是 P ( a ) {\displaystyle P(a)}

具体的计算可以使用类似直式除法的方式。例如,计算 X 3 12 X 2 42 {\displaystyle X^{3}-12X^{2}-42} 除以 X 3 {\displaystyle X-3} ,列式如下:

因此,商式是   X 2 9 X 27 {\displaystyle \ X^{2}-9X-27} ,余式是   123 {\displaystyle \ -123}

通常不定义除以零这种形式。亦即当除以0 或分数的分母为0 时,该式或该数无意义。

相关

  • 攀岩攀岩是从登山衍生出的一项运动。在约1970年前攀岩一直属于登山的一部分,目的只是为了克服登山过程中的困难。直到七十年之后,在法国,攀岩真正变成一项独立运动。由于文化差异及
  • 奇异物质奇异物质(英语:strange matter)是夸克物质(英语:QCD matter)的一种特例,通常认为是包含上夸克、下夸克和奇夸克的流体。这是与核物质(英语:nuclear matter)(质子、中子等构成的普通物质
  • 腙(Hydrazone)是含有R1R2C=NNH2结构的有机化合物,由醛和酮中的氧原子被NNH2官能团所替换而得。通常以肼与酮或醛反应制取。可通过腙的生成来检验醛和酮的存在,例如二硝基苯肼法
  • 德国体育德国是世界体育强国。自19世纪以来,德国国内就出现了职业体育俱乐部,为德国体育的发展奠定了基础。截止2006年,德国在奥运会获得的金牌总数在所有国家排名第五,东德排名第七,西德
  • 棕色脂肪组织棕色脂肪组织(英语:brown adipose tissue,缩写为BAT),是动物体内一种主要储存中、小型脂肪滴的脂肪细胞,可以产生身体的热能。棕色脂肪细胞具有大量线粒体,线粒体内膜上含有丰富的
  • N-甲基-D-天门冬胺酸受体N-甲基-D-天门冬胺酸受体(英语:N-methyl-D-aspartate receptor,简称NMDA受体或NMDAR)为麸胺酸盐受体,是一个主要的分子装置,控制突触的可塑性与记忆功能。NMDA受体是一种离子型麸
  • 高棉裔依善地区 武里南府,素林府,四色菊府北高棉人,或称高棉裔泰国人,是指土生于泰国北部和东北部依善地区的高棉人,他们是高棉帝国统治泰国时代的高棉人的后裔。随着十三世纪素可泰王
  • 第十一航空舰队第11航空舰队为大日本帝国海军之一舰队。从太平洋战争时就为驻在外地之基地航空部队。开战当初时指挥攻占菲律宾・马来・爪哇等之南方作战的航空作战。瓜达尔卡纳尔岛战役开
  • 切尔诺贝利 (消歧义)切尔诺贝利(拉丁化:Chernobyl)是一座乌克兰的城市名,位在切尔诺贝利核事故发生地附近。切尔诺贝利也可指:
  • 次氯酸次氯酸(英语:hypochlorous acid)是一种化学式为HClO的不稳定弱酸,仅能存在于溶液中,一般用作漂白剂、氧化剂、除臭剂和消毒剂。当纯净的氯气通入水中时,会形成盐酸和次氯酸:一氧化